scispace - formally typeset
Search or ask a question

Showing papers in "Genetics Research in 1999"


Journal ArticleDOI
TL;DR: Recessive or partially recessive deleterious effects of alleles, some maintained by mutation pressure and some by balancing selection, thus seem to be the most important source of inbreeding depression.
Abstract: Data on the effects of inbreeding on fitness components are reviewed in the light of population genetic models of the possible genetic causes of inbreeding depression. Deleterious mutations probably play a major role in causing inbreeding depression. Putting together the different kinds of quantitative genetic data, it is difficult to account for the very large effects of inbreeding on fitness in Drosophila and outcrossing plants without a significant contribution from variability maintained by selection. Overdominant effects of alleles on fitness components seem not to be important in most cases. Recessive or partially recessive deleterious effects of alleles, some maintained by mutation pressure and some by balancing selection, thus seem to be the most important source of inbreeding depression. Possible experimental approaches to resolving outstanding questions are discussed.

736 citations


Journal ArticleDOI
TL;DR: One application of the analysis is to improve genome-wide marker-assisted selection, particularly when the information about epistasis is used for selection with mating, as well as other areas that require further investigation.
Abstract: Understanding and estimating the structure and parameters associated with the genetic architecture of quantitative traits is a major research focus in quantitative genetics. With the availability of a well-saturated genetic map of molecular markers, it is possible to identify a major part of the structure of the genetic architecture of quantitative traits and to estimate the associated parameters. Multiple interval mapping, which was recently proposed for simultaneously mapping multiple quantitative trait loci (QTL), is well suited to the identification and estimation of the genetic architecture parameters, including the number, genomic positions, effects and interactions of significant QTL and their contribution to the genetic variance. With multiple traits and multiple environments involved in a QTL mapping experiment, pleiotropic effects and QTL by environment interactions can also be estimated. We review the method and discuss issues associated with multiple interval mapping, such as likelihood analysis, model selection, stopping rules and parameter estimation. The potential power and advantages of the method for mapping multiple QTL and estimating the genetic architecture are discussed. We also point out potential problems and difficulties in resolving the details of the genetic architecture as well as other areas that require further investigation. One application of the analysis is to improve genome-wide marker-assisted selection, particularly when the information about epistasis is used for selection with mating.

309 citations


Journal ArticleDOI
TL;DR: The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect.
Abstract: A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.

259 citations


Journal ArticleDOI
TL;DR: It is found that recombination rates on the order of the mutation rate substantially reduce the power of most test statistics, and that one of the new test statistics is generally more powerful than the others.
Abstract: Two new test statistics were constructed to detect departures from the equilibrium neutral theory that tend to produce genealogies with longer internal branches (e.g. population subdivision or balancing selection). The new statistics are based on a measure of linkage disequilibrium between adjacent pairs of segregating sites. Simulations were run to determine the power of these and previously proposed test statistics to reject an island model of geographic subdivision. Unlike previous power studies, this one uses a coalescent model with recombination. It is found that recombination rates on the order of the mutation rate substantially reduce the power of most test statistics, and that one of the new test statistics is generally more powerful than the others. Two suggestions are made for increasing the power of the statistical tests examined here. First, they can be made more powerful if critical values are obtained from simulations that condition on a lower bound for the population recombination rate. Secondly, for the same total length sequenced, power is increased if independent loci are considered instead of a single contiguous stretch.

205 citations


Journal ArticleDOI
TL;DR: QTLs affecting early and late growth were generally distinct, mapping to separate chromosome locations, which indicates largely separate genetic and physiological systems for early and later murine growth, as Falconer suggested.
Abstract: Over 20 years ago, D. S. Falconer and others launched an important avenue of research into the quantitative of body size growth in mice. This study continues in that tradition by locating quantitative trait loci (QTLs) responsible for murine growth, such as age-specific weights and growth periods, and examining the genetic architecture for body weight. We identified a large number of potential QTLs in an earlier F2 intercross (Intercross I) of the SM/J and LG/J inbred mouse strains. Many of these QTLs are replicated in a second F2 intercross (Intercross II) between the same two strains. These replicated regions provide candidate regions for future fine-mapping studies. We also examined body size and growth QTLs using the combined data set from these two intercrosses, resulting in 96 microsatellite markers being scored for 1045 individuals. An examination of the genetic architecture for age-specific weight and growth periods resulted in locating 20 separate QTLs, which were mainly additive in nature, although dominance was found to affect early growth and body size. QTLs affecting early and late growth were generally distinct, mapping to separate chromosome locations. This QTL pattern indicates largely separate genetic and physiological systems for early and later murine growth, as Falconer suggested. We also found sex-specific QTLs for body size with implications for the evolution of sexual dimorphism.

178 citations


Journal ArticleDOI
TL;DR: For all population structures, a value of QST greater than FST for neutral loci is evidence for spatially divergent evolution by natural selection, and the dimensionless measure of the quantitative genetic variance among populations, QST, is shown to be generally equal to F ST for the neutral additive model.
Abstract: For neutral, additive quantitative characters, the amount of additive genetic variance within and among populations is predictable from Wright's FST, the effective population size and the mutational variance. The structure of quantitative genetic variance in a subdivided metapopulation can be predicted from results from coalescent theory, thereby allowing single-locus results to predict quantitative genetic processes. The expected total amount of additive genetic variance in a metapopulation of diploid individual is given by 2Ne sigma m2 (1 + FST), where FST is Wright's among-population fixation index, Ne is the eigenvalue effective size of the metapopulation, and sigma m2 is the mutational variance. The expected additive genetic variance within populations is given by 2Ne sigma e2(1-FST), and the variance among demes is given by 4FSTNe sigma m2. These results are general with respect to the types of population structure involved. Furthermore, the dimensionless measure of the quantitative genetic variance among populations, QST, is shown to be generally equal to FST for the neutral additive model. Thus, for all population structures, a value of QST greater than FST for neutral loci is evidence for spatially divergent evolution by natural selection.

177 citations


Journal ArticleDOI
TL;DR: This article outlines theoretical models of clines in additive polygenic traits, which are maintained by stabilizing selection towards a spatially varying optimum by assuming a Gaussian distribution of breeding values.
Abstract: This article outlines theoretical models of clines in additive polygenic traits, which are maintained by stabilizing selection towards a spatially varying optimum. Clines in the trait mean can be accurately predicted, given knowledge of the genetic variance. However, predicting the variance is difficult, because it depends on genetic details. Changes in genetic variance arise from changes in allele frequency, and in linkage disequilibria. Allele frequency changes dominate when selection is weak relative to recombination, and when there are a moderate number of loci. With a continuum of alleles, gene flow inflates the genetic variance in the same way as a source of mutations of small effect. The variance can be approximated by assuming a Gaussian distribution of allelic effects; with a sufficiently steep cline, this is accurate even when mutation and selection alone are better described by the 'House of Cards' approximation. With just two alleles at each locus, the phenotype changes in a similar way: the mean remains close to the optimum, while the variance changes more slowly, and over a wider region. However, there may be substantial cryptic divergence at the underlying loci. With strong selection and many loci, linkage disequilibria are the main cause of changes in genetic variance. Even for strong selection, the infinitesimal model can be closely approximated by assuming a Gaussian distribution of breeding values. Linkage disequilibria can generate a substantial increase in genetic variance, which is concentrated at sharp gradients in trait means.

170 citations


Journal ArticleDOI
TL;DR: This new model is used to explore the relationships between synonymous codon usage, nucleotide site diversity and the rate of substitution, and derive the equilibrium frequency distribution of weakly selected segregating sites under the infinite-sites model, and the expected nucleotideSite diversity.
Abstract: Patterns of synonymous codon usage are determined by the forces of mutation, selection and drift. We elaborate on previous population genetic models of codon usage to incorporate parameters of population polymorphism, and demonstrate that the degree of codon bias expected in a single sequence picked at random from the population is accurately predicted by previous models, irrespective of population polymorphism. This new model is used to explore the relationships between synonymous codon usage, nucleotide site diversity and the rate of substitution. We derive the equilibrium frequency distribution of weakly selected segregating sites under the infinite-sites model, and the expected nucleotide site diversity. Contrary to intuition, levels of silent-site diversity can increase with the strength of selection acting on codon usage. We also predict the effects of background selection on statistics of synonymous codon usage and derive simple formulae to predict patterns of codon usage at amino acids with more than two synonymous codons, and the effects of variation in selection coefficient between sites within a gene. We show that patterns of silent-site variation and synonymous codon usage on the X chromosome and autosomes in Drosophila are compatible with recessivity of the fitness effects of unpreferred codons. Finally, we suggest that there still exist considerable discrepancies between current models and data.

159 citations


Journal ArticleDOI
TL;DR: The results support two hypotheses: first, maize plant architecture may have evolved by selection for a gene complex rather than the additive eects of individual loci alone, and second, selection during maize domestication for an allele of tb1 which lacks environmental plasticity may have led to the fixation of a morphological form that can be induced in teosinte by environmental conditions.
Abstract: Summary To test for epistasis and allele-specific environmental responses among quantitative trait loci (QTL) involved in the evolution of maize from its ancestor (teosinte), teosinte alleles of two QTL previously shown to control much of the morphological dierence between these plants were introgressed into an isogenic maize background. Plants of each of the four two-locus homozygous classes for the two QTL were grown in two environments. Three morphological traits and the level of mRNA accumulation for one QTL (teosinte branched1, tb1) were measured. tb1 has a large additive eect on morphology that was correlated with its message level. The second QTL had only negligible eects on morphology when isolated in an isogenic background, but exhibited a strong interaction eect on morphology in combination with tb1. This interaction is also evident in tb1 message levels, suggesting that this second QTL may act as an upstream regulator of tb1. The combined eect of the maize alleles at the two QTL makes tb1 message levels over fourfold higher. Plants homozygous for the teosinte allele at tb1 showed greater phenotypic plasticity across environments than plants homozygous for the maize allele. Our results support two hypotheses. First, maize plant architecture may have evolved by selection for a gene complex rather than the additive eects of individual loci alone. Secondly, selection during maize domestication for an allele of tb1 which lacks environmental plasticity may have led to the fixation of a morphological form that can be induced in teosinte by environmental conditions.

145 citations


Journal ArticleDOI
TL;DR: The results show that adaptation towards a fixed optimum is generally characterized by an exponential effects trend, including changes in the distribution of mutational effects as well as in the nature of the character studied.
Abstract: It is now clear that the genetic basis of adaptation does not resemble that assumed by the infinitesimal model. Instead, adaptation often involves a modest number of factors of large effect and a greater number of factors of smaller effect. After reviewing relevant experimental studies, I consider recent theoretical attempts to predict the genetic architecture of adaptation from first principles. In particular, I review the history of work on Fisher's geometric model of adaptation, including recent studies which suggest that adaptation should be characterized by exponential distributions of gene effects. I also present the results of new simulation studies that test the robustness of this finding. I explore the effects of changes in the distribution of mutational effects (absolute versus relative) as well as in the nature of the character studied (total phenotypic effect versus single characters). The results show that adaptation towards a fixed optimum is generally characterized by an exponential effects trend.The situation to which these studies point is not one of a large number of genes all with more or less equal effect. It seems, rather, that a small number of genes with large effects are responsible for most of the response, the remainder of the response being due to a larger number of loci with small effects.D. S. Falconer (1981)

122 citations


Journal ArticleDOI
TL;DR: There is growing evidence that genetic adaptation to captivity is a major issue in the genetic management of captive populations of endangered species as it reduces reproductive fitness when captive populations are reintroduced into the wild.
Abstract: Most of the major genetic concerns in conservation biology, including inbreeding depression, loss of evolutionary potential, genetic adaptation to captivity and outbreeding depression, involve quantitative genetics. Small population size leads to inbreeding and loss of genetic diversity and so increases extinction risk. Captive populations of endangered species are managed to maximize the retention of genetic diversity by minimizing kinship, with subsidiary efforts to minimize inbreeding. There is growing evidence that genetic adaptation to captivity is a major issue in the genetic management of captive populations of endangered species as it reduces reproductive fitness when captive populations are reintroduced into the wild. This problem is not currently addressed, but it can be alleviated by deliberately fragmenting captive populations, with occasional exchange of immigrants to avoid excessive inbreeding. The extent and importance of outbreeding depression is a matter of controversy. Currently, an extremely cautious approach is taken to mixing populations. However, this cannot continue if fragmented populations are to be adequately managed to minimize extinctions. Most genetic management recommendations for endangered species arise directly, or indirectly, from quantitative genetic considerations.

Journal ArticleDOI
TL;DR: Estimated mutational parameters are remarkably alike for morphological and fitness component traits, indicating low mutation rates and moderate mutational effects, with a distribution generally showing strong negative asymmetry and little leptokurtosis.
Abstract: Recent mutation accumulation results from invertebrate species suggest that mild deleterious mutation is far less frequent than previously thought, implying smaller expressed mutational loads. Although the rate (lambda) and effect (s) of very slight deleterious mutation remain unknown, most mutational fitness decline would come from moderately deleterious mutation (s approximately 0.2, lambda approximately 0.03), and this situation would not qualitatively change in harsh environments. Estimates of the average coefficient of dominance (h) of non-severe deleterious mutations are controversial. The typical value of h = 0.4 can be questioned, and a lower estimate (about 0.1) is suggested. Estimated mutational parameters are remarkably alike for morphological and fitness component traits (excluding lethals), indicating low mutation rates and moderate mutational effects, with a distribution generally showing strong negative asymmetry and little leptokurtosis. New mutations showed considerable genotype-environment interaction. However, the mutational variance of fitness-component traits due to non-severe detrimental mutations did not increase with environmental harshness. For morphological traits, a class of predominantly additive mutations with no detectable effect on fitness and relatively small effect on the trait was identified. This should be close to that responsible for standing variation in natural populations.

Journal ArticleDOI
TL;DR: The authors showed that the difference between these two morphs is due to variation at a single segregating factor located on the right arm of chromosome 3 near map position 51·5 and cytological position 87C-D. This is precisely the position of a desaturase gene previously sequenced using primers derived from yeast and mouse and localized by in situ hybridization to the polytene chromosomes of D. melanogaster.
Abstract: Drosophila melanogaster is polymorphic for the major cuticular hydrocarbon of females. In most populations this hydrocarbon is 7,11-heptacosadiene, but females from Africa and the Caribbean usually possess low levels of 7,11-heptacosadiene and high quantities of its position isomer 5,9-heptacosadiene. Genetic analysis shows that the difference between these two morphs is due to variation at a single segregating factor located on the right arm of chromosome 3 near map position 51·5 and cytological position 87C–D. This is precisely the position of a desaturase gene previously sequenced using primers derived from yeast and mouse, and localized by in situ hybridization to the polytene chromosomes of D. melanogaster . Alleles of this desaturase gene may therefore be responsible for producing the two hydrocarbon morphs. Mating tests following the transfer of these isomers between females of the two morphs show that, in contrast to previous studies, the hydrocarbon profiles have no detectable effect on mating behaviour or sexual isolation.

Journal ArticleDOI
TL;DR: patterns of similarity between several homologous regions of Caenorhabditis elegans and C. briggsae genomes are analysed to imply that the total number of constrained nucleotides within non-coding sequences is comparable to that within coding sequences, so that at least one-third of nucleotide in C. elegans
Abstract: Similarity between related genomes may carry information on selective constraint in each of them. We analysed patterns of similarity between several homologous regions of Caenorhabditis elegans and C. briggsae genomes. All homologous exons are quite similar. Alignments of introns and of intergenic sequences contain long gaps, segments where similarity is low and close to that between random sequences aligned using the same parameters, and segments of high similarity. Conservative estimates of the fractions of selectively constrained nucleotides are 72%, 17% and 18% for exons, introns and intergenic sequences, respectively. This implies that the total number of constrained nucleotides within non-coding sequences is comparable to that within coding sequences, so that at least one-third of nucleotides in C. elegans and C. briggsae genomes are under strong stabilizing selection.

Journal ArticleDOI
TL;DR: Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations and compared with expectations for the diploid model.
Abstract: Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations. Assuming multiplicative fitness interactions among loci, approximate solutions for the mean fitness and inbreeding depression values are also derived for the multiple locus case and compared with expectations for the diploid model. As in diploids, purging of deleterious mutations through consanguineous matings occurs in autotetraploid populations, i.e. the equilibrium mutation load is a decreasing function of the selfing rate. However, the variation of inbreeding depression with the selfing rate depends strongly on the dominance coefficients associated with the three heterozygous genotypes. Inbreeding depression can either increase or decrease with the selfing rate, and does not always vary monotonically. Expected issues for the evolution of the selfing rate consequently differ depending on the dominance coefficients. In some cases, expectations for the evolution of the selfing rate resemble expectations in diploids; but particular sets of dominance coefficients can be found that lead to either complete selfing or intermediate selfing rates as unique evolutionary stable state.

Journal ArticleDOI
TL;DR: Correlated responses to artificial selection on body size in Drosophila melanogaster were investigated, to determine how the changes in size were produced during development.
Abstract: Correlated responses to artificial selection on body size in Drosophila melanogaster were investigated, to determine how the changes in size were produced during development. Selection for increased thorax length was associated with an increase in larval development time, an extended growth period, no change in growth rate, and an increased critical larval weight for pupariation. Selection for reduced thorax length was associated with reduced growth rate, no change in duration of larval development and a reduced critical larval weight for pupariation. In both lines selected for thorax length and lines selected for wing area, total body size changed in the same direction as the artificially selected trait. In large selection lines of both types, the increase in size was achieved almost entirely by an increase in cell number, while in the small lines the decrease in size was achieved predominantly by reduced cell size, and also by a reduction in cell number. The implications of the results for evolutionary-genetic change in body size in nature are discussed.

Journal ArticleDOI
TL;DR: The results indicate that the recombination restriction of the sex chromosomes in heterogametic males does not result from heterogAMetic sex chromosomes, but from maleness, and such sex-chromosome- specific recombinations restriction in heterOGametic sex may have triggered the differentiation of sex chromosome in vertebrates.
Abstract: In the medaka, Oryzias latipes, the mechanism of sex determination (XX/XY) can be revealed by genetic crosses using a body-colour gene, though it does not have cytologically recognizable sex chromosomes. The recombination restriction of sex chromosomes in heterogametic (XY) males has been demonstrated. To elucidate whether the recombination is prevented by the heterogamety of the sex chromosomes or by maleness, we examined the recombination frequencies among three loci located on the sex chromosomes (r, SL1 and SL2) in heterogametic males (XY), homogametic males (XX and YY), homogametic females (XX) and heterogametic females (XY). The recombination frequencies between r–SL1 and SL1–SL2 were as follows: 0, 0 (XY males); 0, 1·5 (XX males); 1·6% (YY males; 1·2%, 14·4% (XY females); 0·8%, 21·8% (XX females). These results indicate that the recombination restriction of the sex chromosomes in heterogametic males does not result from heterogametic sex chromosomes, but from maleness. Such sex-chromosome- specific recombination restriction in heterogametic sex may have triggered the differentiation of sex chromosomes in vertebrates.

Journal ArticleDOI
TL;DR: This model shows that suppressed recombination between meiotic drive and the male character, e.g. by inversion of the X chromosome, is necessary for sex-ratio selection to promote the origin of female mating preferences and exaggerated secondary sexual characters.
Abstract: Summary Hypertrophied sexually dimorphic eye stalks have evolved independently in several families of Diptera, with the eyespan of males exceeding their total body length in some species. These structures function in intermale contests for territories and in mate attraction, the classical mechanisms of sexual selection. In the family Diopsidae, species with extremely exaggerated eye stalks and marked sexual dimorphism in relative eyespan also usually have strongly female-biased sex ratios in nature caused by X-linked meiotic drive, whereas species with relatively small eye stalks have little or no sexual dimorphism, often lack meiotic drive and have even sex ratios. We investigate the possible connection between sexual selection and sex-ratio meiotic drive by analysing a three-locus model for the evolution of female choice for a male character associated with meiotic drive. Both meiotic drive and the male character are X-linked and the female preference is autosomal. Our model shows that suppressed recombination between meiotic drive and the male character, e.g. by inversion of the X chromosome, is necessary for sex-ratio selection to promote the origin of female mating preferences and exaggerated secondary sexual characters. With complete suppression of recombination, sexual selection reduces the frequency of meiotic drive, and may eliminate it. Very rare recombination, gene conversion or mutation, at rates characteristic of chromosome inversions in Drosophila, restores the meiotic drive polymorphism to its original equilibrium. Sex-ratio meiotic drive may thus act as a catalyst accelerating the origin of female mating preference and exaggerated male traits.

Journal ArticleDOI
TL;DR: Three sites in regulatory regions were associated with female-specific variation in abdominal bristle number, one of which was an SSCP site in the region of the gene associated with regulation of sca in embryonic abdominal segments.
Abstract: We evaluated the hypothesis that the Drosophila melanogaster second chromosome gene scabrous (sca), a candidate sensory bristle number quantitative trait locus (QTL), contributes to naturally occurring variation in bristle number. Variation in abdominal and sternopleural bristle number was quantified for wild-derived sca alleles in seven genetic backgrounds: as homozygous second chromosomes (C2) in an isogenic background, homozygous lines in which approximately 20 cM including the sca locus had been introgressed into the isogenic background (sca BC), as C2 and sca BC heterozygotes and hemizygotes against a P element insertional sca allele and a P-induced sca deficiency in the same isogenic background, and as sca BC heterozygotes against the wild-type sca allele of isogenic strain. Molecular restriction map variation was determined for a 45 kb region including the sca locus, and single-stranded conformational polymorphism (SSCP) was examined for the third intron and parts of the third and fourth exons. Associations between each of the 27 molecular polymorphisms and bristle number were evaluated within each genotype and on the first principal component score determined from all seven genotypes, separately for each sex and bristle trait. Permutation tests were used to assess the empirical significance thresholds, accounting for multiple, correlated tests, and correlated markers. Three sites in regulatory regions were associated with female-specific variation in abdominal bristle number, one of which was an SSCP site in the region of the gene associated with regulation of sca in embryonic abdominal segments.

Journal ArticleDOI
TL;DR: A large number of space-time simulations are used to characterize for the first time the parametric and statistical values of Moran's I-statistics for converted individual genotypes as well as for join-count statistics, developing precise and efficient methods of estimating gene dispersal based on the various autocorrelation measures of standing spatial patterns of genetic variation within populations.
Abstract: Various spatial autocorrelation statistics have been widely used both in theoretical population genetics and to study the spatial distribution of diploid genotypes in many plant and animal populations. However, previous simulation studies have considered only diallelic loci. In this paper, we use a large number of space–time simulations to characterize for the first time the parametric and statistical values of Moran's I-statistics for converted individual genotypes as well as for join- count statistics. A wide range of levels of dispersal and numbers of alleles and allele frequencies are modelled and the results reveal the different general effects of each of these factors on these statistics. We also examine the range of appropriate sampling designs and sizes for which predicted values can be interpolated for specific sampling schemes for any given population genetic field survey. Numbers of alleles and allele frequencies each affect some statistics but not others. The results indicate generally low standard deviations. The results also develop precise and efficient methods of estimating gene dispersal, based on the various autocorrelation measures of standing spatial patterns of genetic variation within populations. The results also extend these methods to loci with multiple alleles, typical of those studied through modern molecular methods.

Journal ArticleDOI
TL;DR: Non-invasive methods that allow the estimation of genetic correlations from phenotypic measurements derived from individuals of unknown relatedness are introduced and are obtainable with sample sizes of several hundred individuals.
Abstract: Information on the genetic correlation between traits provides fundamental insight into the constraints on the evolutionary process. Estimates of such correlations are conventionally obtained by raising individuals of known relatedness in artificial environments. However, many species are not readily amenable to controlled breeding programmes, and considerable uncertainty exists over the extent to which estimates derived under benign laboratory conditions reflect the properties of populations in natural settings. Here, non-invasive methods that allow the estimation of genetic correlations from phenotypic measurements derived from individuals of unknown relatedness are introduced. Like the conventional approach, these methods demand large sample sizes in order to yield reasonably precise estimates, and special precautions need to be taken to eliminate bias from shared environmental effects. Provided the sample consists of at least 20% or so relatives, informative estimates of the genetic correlation are obtainable with sample sizes of several hundred individuals, particularly if supplemental information on relatedness is available from polymorphic molecular markers.

Journal ArticleDOI
TL;DR: Investigation of the causal components of phenotypic variance and natural selection on the body condition index of blue tit nestlings under contrasting environmental conditions suggests that, in the current population, the large additive genetic component to fledging condition is not particularly surprising.
Abstract: An increasing amount of evidence indicates that different forms of environmental stress influence the expression of genetic variance in quantitative traits and, consequently, their evolvability. We investigated the causal components of phenotypic variance and natural selection on the body condition index (a trait often related to fitness in wild bird populations) of blue tit (Parus caeruleus) nestlings under contrasting environmental conditions. In three different study years, nestlings grown under a poor feeding regime attained lower body condition than their full-sibs grown under a good feeding regime. Genetic influences on condition were large and significant in both feeding regimes, and in all three study years. However, although estimates of additive genetic variance were consistently higher in the poor than in the good environment, heritability estimates for body condition index were very similar in both environments due to higher levels of environmental variance in the poor environment. Evidence for weak genotype×environment interactions was obtained, but these contributed little to variance in nestling condition. Directional natural selection on fledging condition of nestlings was detected, and there were no indications of year or environmental effects on the form and intensity of selection observed, in a sample of 3659 nestlings over four years. However, selection on fledging condition was very weak (standardized selection gradient, β=0·027±0·016 SE), suggesting that, in the current population, the large additive genetic component to fledging condition is not particularly surprising. The results of these analyses are contrasted with those obtained for other populations and species with similar life-histories.

Journal ArticleDOI
TL;DR: It is considered that this greater-than-usual level of generality leads to additional insights, in a way reminiscent of Cockerham's decomposition of genetic variance into five terms: three terms in addition to the usual additive and dominance terms.
Abstract: We examine the relationships between a genetic marker and a locus affecting a quantitative trait by decomposing the genetic effects of the marker locus into additive and dominance effects under a classical genetic model. We discuss the structure of the associations between the marker and the trait locus, paying attention to non-random union of gametes, multiple alleles at the marker and trait loci, and non-additivity of allelic effects at the trait locus. We consider that this greater-than-usual level of generality leads to additional insights, in a way reminiscent of Cockerham's decomposition of genetic variance into five terms: three terms in addition to the usual additive and dominance terms. Using our framework, we examine several common tests of association between a marker and a trait.

Journal ArticleDOI
TL;DR: Interference with the adsorption of phages to imm-, sp- or 5ts1-mutant-infected cells, in a variety of contexts, inhibits premature lysis-inhibition collapse.
Abstract: Lysis inhibition is a mechanism of latent-period extension and burst-size increase that is induced by the T4 bacteriophage adsorption of T4-infected cells. Mutants of T4 genes imm, sp and 5 (specifically the ts1 mutant of 5) display some lysis inhibition. However, these mutants experience lysis-inhibition collapse, the lysis of lysis-inhibited cells, earlier than wild-type-infected cells (i.e. their collapse occurs prematurely). Lysis from without is a lysis induced by excessive T4 adsorption. Gp5 is an inducer of lysis from without while gpimm and gpsp effect resistance to lysis from without. This paper shows that interfering with the adsorption of phages to imm-, sp- or 5ts1-mutant-infected cells, in a variety of contexts, inhibits premature lysis-inhibition collapse. From these data it is inferred that wild-type T4-infected cells display resistance to lysis-inhibition collapse by a mechanism resembling resistance to lysis from without.

Journal ArticleDOI
TL;DR: Small populations showed greater divergence than large populations between the allele frequencies in the population and those in the pollen pool, indicating paternal bottlenecks, and correlated paternity increases the genetic identity of progeny across families and predisposes populations to biparental inbreeding in subsequent generations.
Abstract: Allozyme markers were used to estimate mating system parameters in nine fragmented populations of the grassland daisy Rutidosis leptorrhynchoides that differed in size and spatial isolation. Multilocus estimates of outcrossing rate did not differ significantly among populations, all indicating a high level of outcrossing (tm=0·84–1·0). Small populations showed greater divergence than large populations between the allele frequencies in the population and those in the pollen pool, indicating paternal bottlenecks. Isolated populations of fewer than 200 individuals also exhibited higher correlations of outcrossed paternity (rp) than larger populations, indicating the production of more full-sibs within families. The combination of paternal bottlenecks and correlated paternity increases the genetic identity of progeny across families and predisposes populations to biparental inbreeding in subsequent generations. As over half the remaining populations of R. leptorrhynchoides contain fewer than 200 plants, such second-order inbreeding may threaten the viability of the species if it is associated with significant inbreeding depression.

Journal ArticleDOI
TL;DR: Simulation was used to investigate the rate of recovery of the recipient genome for a mouse, Drosophila and Arabidopsis genome and it was shown that an incorrect assumption of a binomial distribution of chromosome segments, and failing to take account of a reduction in variance in genomic proportion due to selection, can lead to a downward bias in the estimation of the number of generations required for the formation of a congenic strain.
Abstract: Genetic markers throughout the genome can be used to speed up 'recovery' of the recipient genome in the backcrossing phase of the construction of a congenic strain. The prediction of the genomic proportion during backcrossing depends on the assumptions regarding the distribution of chromosome segments, the population structure, the marker spacing and the selection strategy. In this study simulation was used to investigate the rate of recovery of the recipient genome for a mouse, Drosophila and Arabidopsis genome. It was shown that an incorrect assumption of a binomial distribution of chromosome segments, and failing to take account of a reduction in variance in genomic proportion due to selection, can lead to a downward bias of up to two generations in the estimation of the number of generations required for the formation of a congenic strain.

Journal ArticleDOI
TL;DR: Both nucleotide site diversity and rates of molecular evolution at a weakly selected locus are affected by background selection as though the effective population size N e is reduced in the same way as for a neutral locus.
Abstract: Previous work has shown that genetic diversity at a neutral locus is affected by background selection due to recurrent deleterious mutations as though the effective population size Ne is reduced by a factor that is calculable from genetic parameters such as mutation rates, selection coefficients, and the rates of recombination between sites subject to selection and the neutral locus. Given that silent changes at third coding positions are often subject to weak selection pressures, it is important to develop similar quantitative predictions of the effects of background selection on variation and evolution at weakly selected sites. A diffusion approximation is derived that describes the effects of the presence of a single locus subject to mutation and strongly deleterious selection on variation and evolution at a partially linked, weakly selected locus. The results are validated by computer simulations using the Ito pseudo-sampling method. We show that both nucleotide site diversity and rates of molecular evolution at a weakly selected locus are affected by background selection as though Ne is reduced in the same way as for a neutral locus. Heuristic arguments are presented as to why the change in Ne for the neutral case also applies with weak selection. As in the case of a neutral locus, the number of segregating sites in the population is poorly predicted from the change in Ne. The potential significance of the results in relation to the effects of recombinational environment on molecular variation and evolution is discussed.

Journal ArticleDOI
TL;DR: The contribution of rare, partially recessive alleles to quantitative trait variation can be assessed by comparing the relative magnitudes of two genetic variance components: the covariance of additive and homozygous dominance effects (Cad) and the additive genetic variance (Va).
Abstract: Unconditionally deleterious mutations could be an important source of variation in quantitative traits. Deleterious mutations should be rare (segregating at low frequency in the population) and at least partially recessive. In this paper, I suggest that the contribution of rare, partially recessive alleles to quantitative trait variation can be assessed by comparing the relative magnitudes of two genetic variance components: the covariance of additive and homozygous dominance effects ( C ad ) and the additive genetic variance ( V a ). If genetic variation is due to rare recessives, then the ratio of C ad to V a should be equal to or greater than 1. In contrast, C ad / V a should be close to zero or even negative if variation is caused by alleles at intermediate frequencies. The ratio of C ad to V a can be estimated from phenotypic comparisons between inbred and outbred relatives, but such estimates are likely to be highly imprecise. Selection experiments provide an alternative estimator for C ad / V a , one with favourable statistical properties. When combined with other biometrical analyses, the ratio test can provide an incisive test of the deleterious mutation model.

Journal ArticleDOI
TL;DR: The phenomenon of transposition induction by heavy heat shock (HHS) was studied and two 'hot' subdivisions for transpositions, induced probably during the post-meiotic stage of spermiogenesis, were found: 43B and 97DE.
Abstract: The phenomenon of transposition induction by heavy heat shock (HHS) was studied. Males of a Drosophila isogenic line with a mutation in the major gene radius incompletus (ri) were treated by HHS (37 degrees C for 1 h followed by 4 degrees C for 1 h, with the cycle repeated three times) and crossed to untreated females of the same line. The males were crossed 5 d after heat shock, and also 9 d after HHS. Many transpositions were seen in the F1 larvae by in situ hybridization. The rate of induced transposition was at least 2 orders of magnitude greater than that of the control sample, and was estimated to be 0.11 events per transposable element copy per sperm. Two 'hot' subdivisions for transpositions, induced probably during the post-meiotic stage of spermiogenesis, were found: 43B and 97DE. Three-quarters of all transpositions were localized in these positions. In other sites the rates of induced transpositions were (1.3-3.2) x 10(-2) events per occupied segment per sperm, 1 order of magnitude greater than those of the control.

Journal ArticleDOI
TL;DR: Using both 'natural' and genetically engineered strains, it is found that genetic factors coding for low levels of 7-P in males have co-evolved with factor(s) coding for male responses to high levels of7-P, which stimulates males that mainly produce 7-T.
Abstract: In Drosophila melanogaster, male courtship behaviour is genetically controlled and is influenced by sex pheromones. 7-tricosene (7-T) induces a dose-dependent inhibition of male-male courtship, whereas 7,11-dienes stimulate male courtship of females. There is a geographical quantitative variation in the production of two predominant male hydrocarbons, 7-T and 7-pentacosene (7-P). We have previously found that 7-P, the main hydrocarbon from males of West African strains, stimulates males that mainly produce 7-T. Using both 'natural' and genetically engineered strains, we find that genetic factors coding for low levels of 7-P in males have co-evolved with factor(s) coding for male responses to high levels of 7-P. These two phenotypes are coded by factors on different chromosomes: the intraspecific polymorphism for the production of 7-T and 7-P is largely controlled by chromosome 2, whereas the variation in courtship towards 7-P-rich males is largely controlled by chromosome 3. The polymorphism of male courtship towards 7-P-rich males shows no correlation with the variation in male responses to female flies.