scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Biochemistry in 2002"


Journal ArticleDOI
TL;DR: The expression of MK and PTN is increased in various human tumors, making them promising as tumor markers and as targets for tumor therapy, and from the viewpoints of the treatment of neurodegenerative diseases, increasing the efficiency of in vitro development, and the prevention of HIV infection.
Abstract: Midkine (MK) and pleiotrophin (PTN) are low molecular weight proteins with closely related structures. They are mainly composed of two domains held by disulfide bridges, and there are three antiparallel beta-sheets in each domain. MK and PTN promote the growth, survival, and migration of various cells, and play roles in neurogenesis and epithelial mesenchymal interactions during organogenesis. A chondroitin sulfate proteoglycan, protein-tyrosine phosphatase zeta (PTPzeta), is a receptor for MK and PTN. The downstream signaling system includes ERK and PI3 kinase. MK binds to the chondroitin sulfate portion of PTPzeta with high affinity. Among the various chondroitin sulfate structures, the E unit, which has 4,6-disulfated N-acetylgalactosamine, provides the strongest binding site. The expression of MK and PTN is increased in various human tumors, making them promising as tumor markers and as targets for tumor therapy. MK and PTN expression also increases upon ischemic injury. MK enhances the migration of inflammatory cells, and is involved in neointima formation and renal injury following ischemia. MK is also interesting from the viewpoints of the treatment of neurodegenerative diseases, increasing the efficiency of in vitro development, and the prevention of HIV infection.

394 citations


Journal ArticleDOI
TL;DR: The human platelet-activating factor receptor gene exists as a single copy on chromosome 1 and two 5′-noncoding exons (Exon 1 and 2) has distinct transcription initiation sites and promoters which up-regulates the PAF receptor expression only tissues with transcript 2.
Abstract: The human platelet-activating factor receptor gene exists as a single copy on chromosome 1. Two 5′-noncoding exons (Exon 1 and 2) has distinct transcription initiation sites and promoters. These exons are alternatively spliced to a common splice acceptor site on exon 3 that contains a total coding regions. The transcript 1 is expressed ubiquitously with an emphasis of differentiated eosinophilic cell line (Eol-1), and leukocytes. On the other hand, the transcript 2 is expressed tissue-specifically. The latter is not expressed in leukocytes or brain. The transcript 1 has three tandem repeats of NF-κB, and SP-1 site, and responded to various inflammatory reagents including PAF itself, lipopolysaccharide, or phorbol ester. By northern blotting of tissue or cells with various nutritional or hormonal treatments, the PAF receptor messages are up-regulated. Estrogen increased the expression of the PAF receptor in human endometrial glandular cells, and vitamin A (retinoic acid) or thyroid hormone treatment up-regulates the PAF receptor expression only tissues with transcript 2. By various in vivo and in vitro transcriptional assays (CAT reporter assay, gel mobility shift assay), we identified estrogen responsible element, and hormone responsive element. The PAF receptor hormone responsive element is composed of three direct repeated TGACCT-like hexamer motifs with 2 and 4 bp spaces, and the two upstream and two downstream motifs were identified as response elements for RA and T3.

260 citations


Journal ArticleDOI
TL;DR: Among 15 amino acids tested, arginine exhibited the best results in preventing the formation of aggregates in both cases and was not dependent on the size or isoelectric point of eight kinds of proteins tested.
Abstract: Each protein folds into a unique and native structure spontaneously. However, during the unfolding or refolding process, a protein often tends to form aggregates. To establish a method to prevent undesirable protein aggregation and to increase the stability of native protein structures under deterioration conditions, two types of aggregation conditions, thermal unfolding-induced aggregation and dilution-induced aggregation from denatured state, were studied in the presence of additional amino acids and ions using lysozyme as a model protein. Among 15 amino acids tested, arginine exhibited the best results in preventing the formation of aggregates in both cases. Further biophysical studies revealed that arginine did not change the thermal denaturation temperature (T(m)) of the lysozyme. The preventive effect of arginine on aggregation was not dependent on the size or isoelectric point of eight kinds of proteins tested.

258 citations


Journal ArticleDOI
TL;DR: Protein kinase C alpha (PKC alpha) is a serine/threonine kinase and a member of the conventional (classical) PKCs (cPKCs), which have four conserved (C1 to C4) regions.
Abstract: Protein kinase C alpha (PKC alpha) is a serine/threonine kinase and a member of the conventional (classical) PKCs (cPKCs), which have four conserved (C1 to C4) regions. This ubiquitously expressed PKC isotype is activated in response to many different kinds of stimuli and translocates from cytosol to the specialized cellular compartments (nucleus, focal adhesion, caveolae, etc.) where it is presumed to work. Therefore, PKC alpha has been implicated in a variety of cellular functions including proliferation, apoptosis, differentiation, motility, and inflammation. However, the responses induced by activation or overexpression of PKC alpha vary depending on the types, and sometimes conditions, of cells. For example, in some types of cells, PKC alpha is implicated in cell growth. In contrast, it may play a role in cell cycle arrest and differentiation in other types of cells. Therefore, alterations of cell responses induced by PKC alpha are not an intrinsic property of this isoform. The responses are modulated by dynamic interactions with cell-type specific factors: substrates, modulators and anchoring proteins.

242 citations


Journal ArticleDOI
TL;DR: Cal calcineurin, a calcium/calmodulin-dependent phosphatase (PP2B), is the best enzyme to unveil the phosphat enzyme function, because it was shown to be the direct target for immunosuppressants CsA and FK506, which are powerful tools for understanding this function in diseases as well as in several tissues and organs.
Abstract: Long recognized as an important regulatory mechanism in biosignal processes, modulation of the phosphorylation state of proteins has emerged as the most important mechanism for understanding signal transduction. In contrast to the multitude of protein kinases and the clear signal transduction pathways, relatively few protein phosphatases are known and their regulation is unclear. Among them, calcineurin, a calcium/calmodulin-dependent phosphatase (PP2B), is the best enzyme to unveil the phosphatase function, because it was shown to be the direct target for immunosuppressants CsA and FK506, which are powerful tools for understanding this function in diseases as well as in several tissues and organs. Although calcineurin has been found in the highest concentrations in brain, it has also been detected in many other mammalian tissues. Well characterized in T cell activation by analysing the transcription factor NFAT, the function of calcineurin, however, was less well understood in other tissues and organs. Since the mid-1990s, several novel functions of this phosphatase have been reported, revealing that it plays important roles as a multifunctional regulator under the direct regulation of calcium signaling.

220 citations


Journal ArticleDOI
TL;DR: Various lines of evidence indicate that PKCδ activated in distinct ways plays critical roles in cellular functions such as the control of growth, differentiation, and apoptosis.
Abstract: Protein kinase C (PKC)delta was the first new/novel PKC isoform to be identified by the screening of mammalian cDNA libraries, based on the structural homology of its nucleotide sequences with those of classical/conventional PKC isoforms. PKC delta is expressed ubiquitously among cells and tissues. It is activated by diacylglycerol produced by receptor-mediated hydrolysis of membrane inositol phospholipids as well as by tumor-promoting phorbol ester through the binding of these compounds to the C1 region in its regulatory domain. It is also cleaved by caspase to generate a catalytically active fragment, and it is converted to an active form without proteolysis through the tyrosine phosphorylation reaction. Various lines of evidence indicate that PKC delta activated in distinct ways plays critical roles in cellular functions such as the control of growth, differentiation, and apoptosis. This article briefly summarizes the regulatory mechanisms of PKC delta activity and its functions in cell signaling.

210 citations



Journal ArticleDOI
TL;DR: The gamma isotype of protein kinase C (PKC gamma) is a member of the classical PKC (cPKC) subfamily which is activated by Ca(2+) and diacylglycerol in the presence of phosphatidylserine.
Abstract: The gamma isotype of protein kinase C (PKC gamma) is a member of the classical PKC (cPKC) subfamily which is activated by Ca(2+) and diacylglycerol in the presence of phosphatidylserine. Physiologically, PKC gamma is activated by a mechanism coupled with receptor-mediated breakdown of inositol phospholipid as other cPKC isotypes such as PKC alpha and PKC beta. PKC gamma is expressed solely in the brain and spinal cord and its localization is restricted to neurons, while PKC alpha and PKC beta are expressed in many tissues in addition to the brain. Within the brain, PKC gamma is the most abundant in the cerebellum, hippocampus and cerebral cortex, where the existence of neuronal plasticity has been demonstrated. Pharmacological and electrophysiological studies have shown that several neuronal functions, including long term potentiation (LTP) and long term depression (LTD), specifically require PKC gamma. Generation of mice deficient in PKC gamma provided more information regarding the physiological functions of this isotype. PKC gamma deficient mice (i) have modified long term potentiation (LTP) in hippocampus, (ii) exhibit mild deficits in spatial and contextual learning (iii) exhibit impaired motor coordination due to persistent multiple innervations of climbing fibers on Purkinje cells, (iv) show attenuation of opioid receptor activation, and (v) show decreased effects of ethanol on type A of gamma-aminobutyric acid (GABA) receptor. Furthermore, a point mutation in the PKC gamma gene may contribute to retinitis pigmentosa and Parkinsonian syndrome. This article reviews the specific functions of this neuron-specific isotype of PKC in neuronal signal transduction.

191 citations


Journal ArticleDOI
TL;DR: The Edg lysophospholipid signaling system may play a role in modulating cell motility under such pathological conditions as inflammation, tumor cell dissemination and vascular remodeling.
Abstract: Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are blood-borne lysophospholipids with a wide spectrum of biological activities, which include stimulation of cell growth, prevention of apoptosis, regulation of actin cytoskeleton, and modulation of cell shape, cell migration, and invasion. Activated platelets appear to be a major source of both S1P and LPA in blood. Despite the diversity of their biosynthetic origins, they are considered to share substantial structural similarity. Indeed, recent investigation has revealed that S1P and LPA act via a single family of G protein-coupled receptors designated as Edg. Thus, the Edg isoforms, Edg1 (also called S1P(1)), Edg5 (S1P(2)), Edg3 (S1P(3)), Edg6 (S1P(4)), and Edg8 (S1P(5)), are specific receptors for S1P (and SPC with a lower affinity), whereas Edg2 (LPA(1)), Edg4 (LPA(2)), and Edg7 (LPA(3)) serve as receptors specific for LPA. Each receptor isoform displays a unique tissue expression pattern and coupling to a distinct set of heterotrimeric G proteins, leading to the activation of an isoform-specific panel of multiple intracellular signaling pathways. Recent studies on knockout mice have unveiled non-redundant Edg receptor functions that are essential for normal development and vascular maturation. In addition, the Edg lysophospholipid signaling system may play a role in modulating cell motility under such pathological conditions as inflammation, tumor cell dissemination and vascular remodeling.

174 citations


Journal ArticleDOI
TL;DR: The evidence for the role of these three events in the isotype-specific activation of PKC is summarized, with particular emphasis on catalytic activation and targeting by lipid mediators.
Abstract: The biological function of protein kinase C (PKC) depends on its catalytic activity and spatial localization. Its catalytic competence and localization in the resting state are regulated by serine/threonine phosphorylations, i.e., "maturation." Upon stimulation of various receptors, PKC is catalytically activated by several activators including diacylglycerol. In addition, PKC often translocates to particular subcellular compartments including the plasma membrane and Golgi complex, and such translation is here referred to as "targeting." In short, the physiological function of PKC is controlled by the three events: maturation, catalytic activation, and targeting. Catalytic activation and targeting contribute to temporal, spatial, and isotype-specific regulation of PKC. This review summarizes the evidence for the role of these three events in the isotype-specific activation of PKC, with particular emphasis on catalytic activation and targeting by lipid mediators.

149 citations


Journal ArticleDOI
TL;DR: This review summarizes recent progress in the understanding of the unique structure and physiological and pathological roles of PKC-epsilon with a focus mainly on knockout, transgenic, and mutational studies.
Abstract: Protein kinase C (PKC)-epsilon was first discovered among novel PKC isotypes by cDNA cloning, and characterized as a calcium-independent but phorbol ester/diacylglycerol-sensitive serine/threonine kinase. PKC-epsilon is targeted to a specific cellular compartment in a manner dependent on second messengers and on specific adapter proteins in response to extracellular signals that activate G-protein-coupled receptors, tyrosine kinase receptors, or tyrosine kinase-coupled receptors. PKC-epsilon then regulates various physiological functions including the activation of nervous, endocrine, exocrine, inflammatory, and immune systems. The controlled activation of PKC-epsilon plays a protective role in the development of cardiac ischemia and Alzheimer's disease, whereas its uncontrolled chronic activation results in severe diseases such as malignant tumors and diabetes. This review summarizes recent progress in our understanding of the unique structure and physiological and pathological roles of PKC-epsilon with a focus mainly on knockout, transgenic, and mutational studies.


Journal ArticleDOI
TL;DR: A review of the role of Rho family GTPases in neuronal network formation can be found in this article, where a significant number of X-linked mental retardation genes have been shown to encode components directly involved in signal transduction pathways of the Rho-GTPases.
Abstract: Rho family GTPases act as transducers of signals from extracellular stimuli to the cytoskeleton and gene expression. Their actions are temporal and spatial determinants for cellular functions. The cellular functions of Rho family GTPases have been studied in fibroblasts and endothelial cells, and recent advances have revealed their roles in the regulation of neuronal network formation, including migration, neurite outgrowth, polarity, axon guidance, dendrite maturation and synapse formation. In addition, a significant number of X-linked mental retardation genes have been shown to encode components directly involved in signal transduction pathways of Rho family GTPases, underscoring the view that Rho family GTPases essentially participate in the neuronal network formation. In this review, we will overview current understanding of the functions of Rho family GTPases in neuronal network formation.

Journal ArticleDOI
TL;DR: Recent evidence indicates that the EP3 receptor can augment G(s)-coupled receptor-stimulated adenylyl cyclase activity, and can also be coupled to the G(13) protein, resulting in activation of the small G protein Rho followed by morphological changes in neuronal cells.
Abstract: Prostaglandin (PG) E(2) produces a broad range of physiological and pharmacological actions in diverse tissues through specific receptors on plasma membranes for maintenance of local homeostasis in the body. PGE receptors are divided into four subtypes, EP1, EP2, EP3, and EP4, which have been identified and cloned. These EP receptors are members of the G-protein coupled receptor family. Among these subtypes, the EP3 receptor is unique in its ability to couple to multiple G proteins. EP3 receptor signals are primarily involved in inhibition of adenylyl cyclase via G(i) activation, and in Ca(2+)-mobilization through G(beta)(gamma) from G(i). Along with G(i) activation, the EP3 receptor can stimulate cAMP production via G(s) activation. Recent evidence indicates that the EP3 receptor can augment G(s)-coupled receptor-stimulated adenylyl cyclase activity, and can also be coupled to the G(13) protein, resulting in activation of the small G protein Rho followed by morphological changes in neuronal cells. This article focuses on recent studies on the novel pathways of EP3 receptor signaling.

Journal ArticleDOI
TL;DR: It is established that DGK serves as a key attenuator of diacylglycerol of signaling functions and that the mammalian isozymes are equipped with molecular machineries which enable them to act in specific intracellular sites and/or in signaling protein complexes.
Abstract: Diacylglycerol kinase (DGK) regulates signal transduction by modulating the balance between the two signaling lipids, diacylglycerol and phosphatidic acid. DGK and its homologs occur in a wide range of multicellular organisms and the mammalian DGK is known to consist of nine members with a considerable incidence of alternative splicing. Recent work has established that DGK serves as a key attenuator of diacylglycerol of signaling functions and that the mammalian isozymes are equipped with molecular machineries which enable them to act in specific intracellular sites and/or in signaling protein complexes.

Journal ArticleDOI
TL;DR: The network of protein-protein interactions among the components involved in the machinery, mediated by the iscRSUA-hscBA-fdx-ORF3 gene cluster, is demonstrated and it is found that two cysteine residues in IscU are essential for binding with HscB but not with IscS.
Abstract: The assembly of iron-sulfur (Fe-S) clusters is mediated by complex machinery which, in Escherichia coli, is encoded by the iscRSUA-hscBA-fdx-ORF3 gene cluster. Here, we demonstrate the network of protein-protein interactions among the components involved in the machinery. We have constructed (His)(6)-tagged versions of the components and identified their interacting partners that were co-purified from E. coli extracts with a Ni-affinity column. Direct associations of the defined pair of proteins were further examined in yeast cells using the two-hybrid system. In accord with the previous in vitro binding and kinetic experiments, interactions were observed for the combinations of IscS and IscU, IscU and HscB, IscU and HscA, and HscB and HscA. In addition, we have identified previously unreported interactions between IscS and Fdx, IscS and ORF3, IscA and HscA, and HscA and Fdx. We also found, by site-directed mutational analysis combined with the two-hybrid system, that two cysteine residues in IscU are essential for binding with HscB but not with IscS. Despite the complex network of interactions in various combinations of components, heteromultimeric complexes were not observed in our experiments except for the putative oligomeric form of IscU-IscS-ORF3. Thus, the sequential association and dissociation among the IscS, IscU, IscA, HscB, HscA, Fdx, and ORF3 proteins may be a critical process in the assembly of Fe-S clusters.

Journal ArticleDOI
TL;DR: Results of structure-activity relationship experiments revealed that 2-arachidonoylglycerol, but not anandamide, is the intrinsic natural ligand for the cannabinoid receptor.
Abstract: Delta9-Tetrahydrocannabinol, a major psychoactive component of marijuana, has been shown to interact with specific cannabinoid receptors, thereby eliciting a variety of pharmacological responses in experimental animals and human. In 1990, the gene encoding a cannabinoid receptor (CB1) was cloned. This prompted the search for endogenous ligands. In 1992, N-arachidonoylethanolamine (anandamide) was isolated from pig brain as an endogenous ligand, and in 1995, 2-arachidonoylglycerol was isolated from rat brain and canine gut as another endogenous ligand. Both anandamide and 2-arachidonoylglycerol exhibit various cannabimimetic activities. The results of structure-activity relationship experiments, however, revealed that 2-arachidonoylglycerol, but not anandamide, is the intrinsic natural ligand for the cannabinoid receptor. 2-Arachidonoylglycerol is a degradation product of inositol phospholipids that links the function of cannabinoid receptors with the enhanced inositol phospholipid turnover in stimulated tissues and cells. The possible physiological roles of cannabinoid receptors and 2-arachidonoylglycerol in various mammalian tissues such as those of the nervous system are discussed.

Journal ArticleDOI
TL;DR: The structures and possible biological functions of intracellular PAF-AHs are reviewed, which are thought to be involved in diverse pathological processes, including disorganization of membrane structure andPAF-like proinflammatory action.
Abstract: Platelet-activating factor (PAF) is one of the most potent lipid messengers involved in a variety of physiological events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity, and its deacetylation induces loss of activity. The deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH). A series of biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Type I PAF-AH is a G-protein-like complex consisting of two catalytic subunits (alpha1 and alpha2) and a regulatory beta subunit. The beta subunit is a product of the LIS1 gene, mutations of which cause type I lissencephaly. Recent studies indicate that LIS1/beta is important in cellular functions such as induction of nuclear movement and control of microtubule organization. Although substantial evidence is accumulating supporting the idea that the catalytic subunits are also involved in microtubule function, it is still unknown what role PAF plays in the process and whether PAF is an endogenous substrate of this enzyme. Type II PAF-AH is a single polypeptide and shows significant sequence homology with plasma PAF-AH. Type II PAF-AH is myristoylated at the N-terminus and like other N-myristoylated proteins is distributed in both the cytosol and membranes. Plasma PAF-AH is also a single polypeptide and exists in association with plasma lipoproteins. Type II PAF-AH as well as plasma PAF-AH may play a role as a scavenger of oxidized phospholipids which are thought to be involved in diverse pathological processes, including disorganization of membrane structure and PAF-like proinflammatory action. In this review, we will focus on the structures and possible biological functions of intracellular PAF-AHs.

Journal ArticleDOI
TL;DR: The crystal structure of DXR complexed with NADPH and a sulfate ion from Escherichia coli showed the presence of an extra domain, which is absent from other NADPH-dependent oxidoreductases, in addition to the conformation of catalytic residues and the substrate binding site.
Abstract: The key enzyme in the nonmevalonate pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), has been shown to be an effective target of antimalarial drugs. Here we report the crystal structure of DXR complexed with NADPH and a sulfate ion from Escherichia coli at 2.2 A resolution. The structure showed the presence of an extra domain, which is absent from other NADPH-dependent oxidoreductases, in addition to the conformation of catalytic residues and the substrate binding site. A flexible loop covering the substrate binding site plays an important role in the enzymatic reaction and the determination of substrate specificity.

Journal ArticleDOI
TL;DR: Under the same conditions, reduced beta2M did not form typical amyloid fibrils, although it inhibited fibril extension competitively, suggesting that the conformation defined by the disulfide bond is important for amyloids fibrill formation of beta2m.
Abstract: beta(2)-Microglobulin (beta2M), the light chain of the type I major histocompatibility complex, is a major component of dialysis-related amyloid fibrils. beta2M in the native state has a typical immunoglobulin fold with a buried intrachain disulfide bond. The conformation and stability of recombinant beta2M in which the intrachain disulfide bond was reduced were studied by CD, tryptophan fluorescence, and one-dimensional NMR. The conformation of the reduced beta2M in the absence of denaturant at pH 8.5 was similar to that of the intact protein unless the thiol groups were modified. However, reduction of the disulfide bond decreased the stability as measured by denaturation in guanidine hydrochloride. Intact beta2M formed amyloid fibrils at pH 2.5 by extension reaction using sonicated amyloid fibrils as seeds. Under the same conditions, reduced beta2M did not form typical amyloid fibrils, although it inhibited fibril extension competitively, suggesting that the conformation defined by the disulfide bond is important for amyloid fibril formation of beta2M.

Journal ArticleDOI
TL;DR: The arylhydrocarbon receptor, presumably in collaboration with the Arnt, activates the DNA synthesis and the subsequent cell proliferation in A549 cells, and this study concludes that the AhR regulates cell proliferation.
Abstract: The arylhydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates a spectrum of toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the physiological ligand for the AhR has not yet been identified, several reports have suggested that the AhR may play important roles not only in the regulation of xenobiotic metabolism but also in the maintenance of homeostatic functions [Singh et al. (1996) Arch. Biochem. Biophys. 329, 47-55; Crawford et al. (1997) Mol. Pharmacol. 52, 921-927; Chang et al. (1998) Mol. Cell. Biol. 18, 525-535]. Several lines of evidence suggest that one of the possible physiological roles of the AhR is regulation of cell proliferation. In this study, we first showed that treatment of A549 cells with the AhR agonist stimulates cell proliferation. The effect was antagonized by co-treatment with alpha-naphthoflavone. To obtain direct evidence that the AhR regulates cell proliferation, we isolated the clones that overexpress the AhR. These clones grow faster than control cells, and the rate of growth is proportional to the amount of the AhR. Cell cycle analysis revealed that the acceleration of cell growth by overexpression of the AhR is most probably due to shortening of the late M to S phases. Studies on the expression profiles of cell cycle regulators showed that the AhR or AhR ligand induces the expression of DP2, PCNA, and RFC38. DP2 is the transcription factor that forms the functional dimer with E2F and regulates the expression of several genes involved in DNA synthesis. Interestingly, both PCNA and RFC38 are target genes of E2F and the DP complex. Also, both of these factors are involved in regulating DNA polymerase delta activity. E2F activity was substantially increased in both the AhR-overexpressing cells and the AhR-agonist treated cells, suggesting that AhR-activated E2F/DP2 may induce the expression of PCNA and RFC38 and subsequent DNA synthesis. Down-regulation of the expression of the Arnt by RNAi diminished the effects of the AhR on the cell proliferation of the A549 cells. Consequently, we conclude that the AhR, presumably in collaboration with the Arnt, activates the DNA synthesis and the subsequent cell proliferation in A549 cells.

Journal ArticleDOI
TL;DR: It is suggested that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and it is termed the "Hibernation" stage.
Abstract: During the stationary growth phase, Escherichia coli 70S ribosomes are converted to 100S ribosomes, and translational activity is lost. This conversion is caused by the binding of the ribosome modulation factor (RMF) to 70S ribosomes. In order to elucidate the mechanisms by which 100S ribosomes form and translational inactivation occurs, the shape of the 100S ribosome and the RMF ribosomal binding site were investigated by electron microscopy and protein-protein cross-linking, respectively. We show that (i) the 100S ribosome is formed by the dimerization of two 70S ribosomes mediated by face-to-face contacts between their constituent 30S subunits, and (ii) RMF binds near the ribosomal proteins S13, L13, and L2. The positions of these proteins indicate that the RMF binding site is near the peptidyl transferase center or the P site (peptidyl-tRNA binding site). These observations are consistent with the translational inactivation of the ribosome by RMF binding. After the "Recycling" stage, ribosomes can readily proceed to the "Initiation" stage during exponential growth, but during stationary phase, the majority of 70S ribosomes are stored as 100S ribosomes and are translationally inactive. We suggest that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and we have termed it the "Hibernation" stage.

Journal ArticleDOI
TL;DR: Findings implicate the PI 3-kinase/Akt and ERK signaling pathways in the promotion of osteoclast survival by IL-1alpha and suggest that the latter may be responsible for the suppression of apoptosis in osteoclasts.
Abstract: Osteoclasts, cells that resorb bone, die once fully differentiated. Several factors including interleukin-1 (IL-1) have been shown to regulate the survival of mature osteoclasts. However, information on the mechanism underlying the regulation of osteoclast survival has been limited. In this study, we investigated the mechanism for the IL-1-stimulated survival of osteoclasts. Treatment of purified osteoclasts with IL-1alpha led to activation of the serine-threonine kinases Akt and ERK. Blocking the activation of Akt with LY294002, a specific inhibitor of the Akt up-stream molecule PI 3-kinase, or an with adenoviral vector for a dominant-negative form of Akt prevented the stimulation of osteoclast survival by IL-1alpha. PD98059, a specific inhibitor of the ERK-activating kinase MEK1, also abolished the effects of IL-1alpha on ERK activation and osteoclast survival. IL-1alpha reduced the apoptosis of osteoclasts by reducing caspase 3 activity. The IL-1alpha-mediated suppression of apoptosis was abolished by the PI 3-kinase/Akt or MEK1/ERK pathway inhibitor. These findings implicate the PI 3-kinase/Akt and ERK signaling pathways in the promotion of osteoclast survival by IL-1alpha.

Journal ArticleDOI
TL;DR: Analyses of the mutant species of F. oxysporum that were defective in Nar and/or assimilatory nitrate reductase conclusively showed that Nar is essential for the fungal denitrification.
Abstract: Dissimilatory nitrate reductase (Nar) was solubilized and partially purified from the large particle (mitochondrial) fraction of the denitrifying fungus Fusarium oxysporum and characterized. Many lines of evidence showed that the membrane-bound Nar is distinct from the soluble, assimilatory nitrate reductase. Further, the spectral and other properties of the fungal Nar were similar to those of dissimilatory Nars of Escherichia coli and denitrifying bacteria, which are comprised of a molybdoprotein, a cytochrome b, and an iron-sulfur protein. Formate-nitrate oxidoreductase activity was also detected in the mitochondrial fraction, which was shown to arise from the coupling of formate dehydrogenase (Fdh), Nar, and a ubiquinone/ubiquinol pool. This is the first report of the occurrence in a eukaryote of Fdh that is associated with the respiratory chain. The coupling with Fdh showed that the fungal Nar system is more similar to that involved in the nitrate respiration by Escherichia coli than that in the bacterial denitrifying system. Analyses of the mutant species of F. oxysporum that were defective in Nar and/or assimilatory nitrate reductase conclusively showed that Nar is essential for the fungal denitrification.

Journal ArticleDOI
TL;DR: Immunofluorescence analysis revealed that exposure to proteasome inhibitors induced the formation of aggresomes in U373 MG cells, to which HSP27 and alphaB-crystallin were recruited, and phosphorylation was not required for this accumulation in aggresome.
Abstract: Molecular chaperones and the ubiquitin-proteasome pathway are known to participate in the quality control of proteins in cells. In this study, we examined the responses of small heat shock proteins to proteasome inhibitors to clarify their roles under conditions where misfolded proteins are abnormally accumulated. HSP27 and alphaB-crystallin accumulated in both soluble and, more prominently, insoluble fractions after exposure to MG-132, a proteasome inhibitor. Enhanced expression of mRNAs for HSP27 and alphaB-crystallin was observed, suggesting transcriptional activation. Phosphorylation of HSP27 and alphaB-crystallin in cells treated with MG-132 was enhanced concomitantly with activation of p38 and p44/42 MAP kinase pathways. Immunofluorescence analysis revealed that exposure to proteasome inhibitors induced the formation of aggresomes in U373 MG cells, to which HSP27 and alphaB-crystallin were recruited. However, phosphorylation was not required for this accumulation in aggresomes. Thus, HSP27 and alphaB-crystallin are increased, phosphorylated and localized in aggresomes when proteasome activity is inhibited.

Journal ArticleDOI
TL;DR: Mutation of two thioredoxin-related motifs in hP5 revealed that the first motif is more important than the second for isomerase activity and that theFirst cysteine in each motif is necessary for isomersite activity.
Abstract: Human P5 (hP5) was expressed in the Escherichia coli pET system and purified by sequential Ni 2 + -chelating resin column chromatography. Characterization of purified hP5 indicated that it has both isomerase and chaperone activities, but both activities are lower than those of human protein disulfide isomerase (PDI). Moreover, hP5 was observed to have peptide-binding ability, and its chaperone activity was confirmed with rhodanese and citrate synthase as substrates, but not with D-glyceraldehyde-3-phosphate dehydrogenase, showing that hP5 has substrate specificity with respect to chaperone activity. Mutation of two thioredoxin-related motifs in hP5 revealed that the first motif is more important than the second for isomerase activity and that the first cysteine in each motif is necessary for isomerase activity. Since thioredoxin motif mutants lacking isomerase activity retain chaperone activity with the substrate citrate synthase, the isomerase and chaperone activities of hP5 are probably independent, as was shown for PDI.

Journal ArticleDOI
TL;DR: The catalytic residues of levansucrase were analyzed by random mutation and site-directed mutagenesis and found that substitution of Glu278 with Asp and His reduced the k(cat) for sucrose hydrolysis 30- and 210-fold, respectively, strongly suggesting Glu 278 plays a key role in catalyzing this reaction.
Abstract: The catalytic residues of levansucrase (sucrose:2,6-beta-D-fructan 6-beta-D-fructosyltransferase, EC 2.4.1.10) from Zymomonas mobilis were analyzed by random mutation and site-directed mutagenesis. We found that substitution of Glu278 with Asp and His reduced the k(cat) for sucrose hydrolysis 30- and 210-fold, respectively, strongly suggesting Glu278 plays a key role in catalyzing this reaction. Given the likelihood that another acidic amino residue was also involved, we constructed variants in which acidic amino acids located within homologous regions among bacterial levansucrases and fructosyltransferases were substituted, and found that substitution of Asp194, located in homologous region III, abolished sucrose hydrolysis. In addition, Glu278 was determined to be situated within the DXXER motif in homologous region IV conserved among bacterial levansucrases and fructosyltransferases, while Asp194 was within the triplet RDP motif conserved among bacterial levansucrases, fructosyltransferases and fructofuranosidases. Finally, comparison of our findings with published data on other site-directed mutated enzymes indicated His296, also located in homologous region IV, is crucial for catalysis of the transfructosylation reaction.

Journal ArticleDOI
TL;DR: This minireview will focus mainly on two areas of signal transduction where the roles of PKC beta I and PKCbeta II are relatively well-characterized: immunoreceptor and insulin receptor systems and their involvement in disorders due to pertubations in these signaling systems, i.e., immunodeficiencies and diabetes.
Abstract: PKC beta I and PKC beta II are DAG- and Ca(2+)-dependent conventional or classical isoforms of protein kinase C. Generated by alternative splicing from a single gene, they differ at their C-terminal 50 (beta I) or 52 (beta II) residues. They are expressed as major PKC isoforms in a variety of tissues, and thus the functions ascribed to "PKC" based on early studies using phorbol esters and PKC inhibitors could be attributed to them. As tools to probe into isoform-specific functions have recently become available, our understanding of the normal functions of these isoforms has dramatically increased. This minireview will focus mainly on two areas of signal transduction where the roles of PKC beta I and PKC beta II are relatively well-characterized: immunoreceptor and insulin receptor systems. Their involvement in disorders due to pertubations in these signaling systems, i.e., immunodeficiencies and diabetes, is also reviewed. Finally, patterns of PKC action in these and other biologic systems are discussed.

Journal ArticleDOI
TL;DR: The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching, suggesting that 2- D PAGE combined with Edman sequences and mass Spectrometry analysis can be effectively used to identify plant proteins.
Abstract: The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching. Image analysis revealed 352 protein spots on 2-D PAGE after staining with Coomassie Brilliant Blue. The amino acid sequences of 44 of 84 proteins were determined; for 31 of these proteins, a clear function could be assigned, whereas for 12 proteins, no function could be assigned. Forty proteins did not yield amino acid sequence information, because they were N-terminally blocked, or the obtained sequences were too short and/or did not give unambiguous results. Fifty-nine proteins were analyzed by mass spectrometry; all of these proteins were identified by matching to the protein database. The amino acid sequences of 19 of 27 proteins analyzed by mass spectrometry were similar to the results of Edman sequencing. These results suggest that 2-D PAGE combined with Edman sequencing and mass spectrometry analysis can be effectively used to identify plant proteins.

Journal ArticleDOI
TL;DR: Available evidence indicates that this particular isoform of protein kinase C plays crucial roles in the signaling of cell differentiation in a cell-type-specific manner.
Abstract: The eta isoform of protein kinase C (PKC eta) is classified into the Ca2+-independent novel PKC subfamily and assigned to human chromosome 14 (14q22-23) and mouse chromosome 12 (12C3-D2) It is highly expressed in epithelial tissues especially in squamous epithelia PKC eta is unique in that it is specifically activated by cholesterol sulfate and sulfatide, sulfated metabolites of cholesterol and cerebroside, respectively PKC eta overexpression induces G1 arrest and differentiation in keratinocytes PKC eta-induced differentiation is accompanied by the transcriptional activation of transglutaminase I, a key enzyme in squamous differentiation, and involucrin, a precursor of cornified envelopes In keratinocytes, PKC eta associates with the cyclin E/cdk2/p21 complex and inhibits the cdk2-kinase activity, leading to G1 arrest Cholesterol sulfate inhibits the promotional phase of skin carcinogenesis Moreover, PKC eta-knockout mice show a much higher sensitivity to carcinogenesis, suggesting that PKC eta is negatively involved in tumor promotion through stimulation of keratinocyte differentiation In addition to epithelial cells, recent studies revealed that PKC eta acts as a key regulator in early B-cell development Although the functions of PKC eta in other cell types are not yet fully elucidated, available evidence indicates that this particular isoform plays crucial roles in the signaling of cell differentiation in a cell-type-specific manner