scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Geophysical Research in 1999"


Journal ArticleDOI
TL;DR: In this article, a third-generation numerical wave model to compute random, short-crested waves in coastal regions with shallow water and ambient currents (Simulating Waves Nearshore (SWAN)) has been developed, implemented, and validated.
Abstract: A third-generation numerical wave model to compute random, short-crested waves in coastal regions with shallow water and ambient currents (Simulating Waves Nearshore (SWAN)) has been developed, implemented, and validated. The model is based on a Eulerian formulation of the discrete spectral balance of action density that accounts for refractive propagation over arbitrary bathymetry and current fields. It is driven by boundary conditions and local winds. As in other third-generation wave models, the processes of wind generation, whitecapping, quadruplet wave-wave interactions, and bottom dissipation are represented explicitly. In SWAN, triad wave-wave interactions and depth-induced wave breaking are added. In contrast to other third-generation wave models, the numerical propagation scheme is implicit, which implies that the computations are more economic in shallow water. The model results agree well with analytical solutions, laboratory observations, and (generalized) field observations.

3,625 citations


Journal ArticleDOI
TL;DR: In this article, the authors explore the stream power erosion model in an effort to elucidate its consequences in terms of large-scale topographic (fluvial) relief and its sensitivity to tectonic and climatic forcing.
Abstract: The longitudinal profiles of bedrock channels are a major component of the relief structure of mountainous drainage basins and therefore limit the elevation of peaks and ridges. Further, bedrock channels communicate tectonic and climatic signals across the landscape, thus dictating, to first order, the dynamic response of mountainous landscapes to external forcings. We review and explore the stream-power erosion model in an effort to (1) elucidate its consequences in terms of large-scale topographic (fluvial) relief and its sensitivity to tectonic and climatic forcing, (2) derive a relationship for system response time to tectonic perturbations, (3) determine the sensitivity of model behavior to various model parameters, and (4) integrate the above to suggest useful guidelines for further study of bedrock channel systems and for future refinement of the streampower erosion law. Dimensional analysis reveals that the dynamic behavior of the stream-power erosion model is governed by a single nondimensional group that we term the uplift-erosion number, greatly reducing the number of variables that need to be considered in the sensitivity analysis. The degree of nonlinearity in the relationship between stream incision rate and channel gradient (slope exponent n) emerges as a fundamental unknown. The physics of the active erosion processes directly influence this nonlinearity, which is shown to dictate the relationship between the uplift-erosion number, the equilibrium stream channel gradient, and the total fluvial relief of mountain ranges. Similarly, the predicted response time to changes in rock uplift rate is shown to depend on climate, rock strength, and the magnitude of tectonic perturbation, with the slope exponent n controlling the degree of dependence on these various factors. For typical drainage basin geometries the response time is relatively insensitive to the size of the system. Work on the physics of bedrock erosion processes, their sensitivity to extreme floods, their transient responses to sudden changes in climate or uplift rate, and the scaling of local rock erosion studies to reach-scale modeling studies are most sorely needed.

1,805 citations


Journal ArticleDOI
TL;DR: In this paper, the spectral variation of α is typically not considered in the analysis and comparison of values from different techniques, and the spectral measurements of τ a from 340 to 1020 nm obtained from ground-based Aerosol Robotic Network radiometers located in various locations where either biomass burning, urban, or desert dust aerosols are prevalent.
Abstract: The Angstrom wavelength exponent α, which is the slope of the logarithm of aerosol optical depth (τ a ) versus the logarithm of wavelength (λ), is commonly used to characterize the wavelength dependence of τ a and to provide some basic information on the aerosol size distribution. This parameter is frequently computed from the spectral measurements of both ground-based sunphotometers and from satellite and aircraft remote sensing retrievals. However, spectral variation of α is typically not considered in the analysis and comparison of values from different techniques. We analyze the spectral measurements of τ a from 340 to 1020 nm obtained from ground-based Aerosol Robotic Network radiometers located in various locations where either biomass burning, urban, or desert dust aerosols are prevalent. Aerosol size distribution retrievals obtained from combined solar extinction and sky radiance measurements are also utilized in the analysis. These data show that there is significant curvature in the In τ a versus In λ relationship for aerosol size distributions dominated by accumulation mode aerosols (biomass burning and urban). Mie theory calculations of α for biomass burning smoke (for a case of aged smoke at high optical depth) agree well with observations, confirming that large spectral variations in α are due to the dominance of accumulation mode aerosols. A second order polynomial fit to the In τ a versus In λ data provides excellent agreement with differences in τ a of the order of the uncertainty in the measurements (-0.01-0.02). The significant curvature in In τ a versus In λ for high optical depth accumulation mode dominated aerosols results in α values differing by a factor of 3-5 from 340 to 870 nm. We characterize the curvature in In τ a versus In λ by the second derivative α' and suggest that this parameter be utilized in conjunction with α to characterize the spectral dependence of τ a , The second derivative of In τ a versus In λ gives an indication of the relative influence of accumulation mode versus coarse mode particles on optical properties.

1,788 citations


Journal ArticleDOI
TL;DR: In this paper, a set of two general circulation models of the Martian atmosphere derived from the models originally developed in the early 1990s are described. But the models share the same physical parameterizations but use two complementary numerical methods to solve the atmospheric dynamic equations.
Abstract: We describe a set of two “new generation” general circulation models of the Martian atmosphere derived from the models we originally developed in the early 1990s. The two new models share the same physical parameterizations but use two complementary numerical methods to solve the atmospheric dynamic equations. The vertical resolution near the surface has been refined, and the vertical domain has been extended to above 80 km. These changes are accompanied by the inclusion of state-of-the-art parameterizations to better simulate the dynamical and physical processes near the surface (boundary layer scheme, subgrid-scale topography parameterization, etc.) and at high altitude (gravity wave drag). In addition, radiative transfer calculations and the representation of polar processes have been significantly improved. We present some examples of zonal-mean fields from simulations using the model at several seasons. One relatively novel aspect, previously introduced by Wilson [1997], is that around northern winter solstice the strong pole to pole diabatic forcing creates a quasi-global, angular-momentum conserving Hadley cell which has no terrestrial equivalent. Within such a cell the Coriolis forces accelerate the winter meridional flow toward the pole and induce a strong warming of the middle polar atmosphere down to 25 km. This winter polar warming had been observed but not properly modeled until recently. In fact, thermal inversions are generally predicted above one, and often both, poles around 60–70 km. However, the Mars middle atmosphere above 40 km is found to be very model-sensitive and thus difficult to simulate accurately in the absence of observations.

1,194 citations


Journal ArticleDOI
TL;DR: In this article, a third-generation spectral wave model for small-scale, coastal regions with shallow water, (barrier) islands, tidal flats, local wind, and ambient currents is verified in stationary mode with measurements in five real field cases.
Abstract: A third-generation spectral wave model (Simulating Waves Nearshore (SWAN)) for small-scale, coastal regions with shallow water, (barrier) islands, tidal flats, local wind, and ambient currents is verified in stationary mode with measurements in five real field cases. These verification cases represent an increasing complexity in two- dimensional bathymetry and added presence of currents. In the most complex of these cases, the waves propagate through a tidal gap between two barrier islands into a bathymetry of channels and shoals with tidal currents where the waves are regenerated by a local wind. The wave fields were highly variable with up to 3 orders of magnitude difference in energy scale in individual cases. The model accounts for shoaling, refraction, generation by wind, whitecapping, triad and quadruplet wave-wave interactions, and bottom and depth-induced wave breaking. The effect of alternative formulations of these processes is shown. In all cases a relatively large number of wave observations is available, including observations of wave directions. The average rms error in the computed significant wave height and mean wave period is 0.30 m and 0.7 s, respectively, which is 10% of the incident values for both.

1,082 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an introduction to the special issue of the Journal of Geophysical Research on “New Developments and Applications With the NCAR Regional Climate Model (RegCM).
Abstract: This paper provides an introduction to the special issue of the Journal of Geophysical Research on “New Developments and Applications With the NCAR Regional Climate Model (RegCM).” In the first part of the paper we revisit and discuss outstanding issues in regional climate modeling in view of the progress achieved in this area of research during the last decade. We discuss issues of simulation length, spin-up, model physics, domain and resolution, lateral boundary conditions, multiple and two way nesting, and variable resolution approaches. In the second part we introduce the papers included in this issue. Among the primary model developments that occurred in the last few years are inclusions of the radiative transfer package and cumulus convection scheme from the National Center for Atmospheric Research (NCAR) global model CCM3, a simplified explicit moisture scheme including direct interaction with cloud radiation, testing of a variable resolution model configuration, improvements in the coupled lake model, and interactive coupling with radiatively active atmospheric aerosols. The papers in the issue illustrate a wide range of applications over different regions, such as the United States, East Asia, central Asia, eastern Africa. The main model limitations and areas in need of improvement are indicated.

954 citations


Journal ArticleDOI
TL;DR: In this paper, a numerical model of the coupled processes of tectonic deformation and surface erosion in convergent orogens is developed to investigate the nature of the interaction between these processes.
Abstract: A numerical model of the coupled processes of tectonic deformation and surface erosion in convergent orogens is developed to investigate the nature of the interaction between these processes. Crustal deformation is calculated by a two-dimensional finite element model of deformation in response to subduction and accretion of continental crust. Erosion operates on the uplifted surface of this model through fluvial incision which is taken to be proportional to stream power. The relative importance of the tectonic and erosion processes is given by a dimensionless “erosion number” relating convergence velocity, rock erodibility, and precipitation rate. This number determines the time required for a system to reach steady state and the final topographic shape and size of a mountain belt. Fundamental characteristics of the model orogens include asymmetric topography with shallower slopes facing the subducting plate and an asymmetric pattern of exhumation with the deepest levels of exhumation opposite to subduction. These characteristics are modified when the regional climate exhibits a dominant wind direction and orographically enhanced precipitation on one side of the mountain belt. The two possible cases are dominant wind in the direction of motion of the subducting plate and dominant wind direction in the opposite direction of the subducting plate velocity. Models of the former case predict a broad zone of exhumation with maximum exhumation in the orogen interior. Models of the latter case predict a focused zone of exhumation at the margin of the orogen and, at high erosion number, a reversal in the topographic asymmetry. Natural examples of these two cases are presented. The Southern Alps of New Zealand exhibits the climate and exhumation asymmetry characteristic of wind in the direction opposite to motion of the subducting plate. The asymmetry of topography suggests that erosion is not efficient enough to have reversed the topographic asymmetry. The contrasting example of dominant wind in the direction of subduction motion is provided by the Olympic Mountains of Washington State. In this case, exhumation of deep levels of the Cascadia accretionary wedge shows a broad domal pattern consistent with the observed orographic precipitation.

915 citations


Journal ArticleDOI
TL;DR: In this paper, a technique to model the radiative properties of mineral aerosols which accounts for their composition is described. But the authors focus on the spectral properties of the aerosols and do not consider the physical properties of these aerosols.
Abstract: We describe a technique to model the radiative properties of mineral aerosols which accounts for their composition. We compile a data set of refractive indices of major minerals and employ it, along with data on mineralogical composition of dust from various locations, to calculate spectral optical and radiative properties of mineral aerosol mixtures. Such radiative properties are needed for climate modeling and remote sensing applications. We consider external mixtures of individual minerals, as well as mixtures of aggregates. We demonstrate that an external mixture of individual minerals must contain unrealistically high amounts of hematite to have a single scattering albedo lower than 0.9 at 500 nm wavelength. In contrast, aggregation of hematite with quartz or clays can strongly enhance absorption by dust at solar wavelengths. We also simulate the daily mean net (solar + infrared) forcing by dust of varying compositions. We found that, for a given composition and under similar atmospheric conditions, a mixture of aggregates can cause the positive radiative forcing while a mixture of individual minerals gives the negative forcing.

872 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that large stratospheric anomalies are precursors to changes in tropospheric weather patterns, and the association of the AO pattern in the troposphere with modulation of the strength of the Stratospheric polar vortex provides perhaps the best measure of coupling between the stratosphere and the Troposphere.
Abstract: Geopotential anomalies ranging from the Earth's surface to the middle stratosphere in the northern hemisphere are dominated by a mode of variability known as the Arctic Oscillation (AO). The AO is represented herein by the leading mode (the first empirical orthogonal function) of low-frequency variability of wintertime geopotential between 1000 and 10 hPa. In the middle stratosphere the signature of the AO is a nearly zonally symmetric pattern representing a strong or weak polar vortex. At 1000 hPa the AO is similar to the North Atlantic Oscillation, but with more zonal symmetry, especially at high latitudes. In zonal-mean zonal wind the AO is seen as a north-south dipole centered on 40°–45°N; in zonal-mean temperature it is seen as a deep warm or cold polar anomaly from the upper troposphere to ∼10 hPa. The association of the AO pattern in the troposphere with modulation of the strength of the stratospheric polar vortex provides perhaps the best measure of coupling between the stratosphere and the troposphere. By examining separately time series of AO signatures at tropospheric and stratospheric levels, it is shown that AO anomalies typically appear first in the stratosphere and propagate downward. The midwinter correlation between the 90-day low-pass-filtered 10-hPa anomaly and the 1000-hPa anomaly exceeds 0.65 when the surface anomaly time series is lagged by about three weeks. The tropospheric signature of the AO anomaly is characterized by substantial changes to the storm tracks and strength of the midtropospheric flow, especially over the North Atlantic and Europe. The implications of large stratospheric anomalies as precursors to changes in tropospheric weather patterns are discussed.

862 citations


Journal ArticleDOI
TL;DR: In this paper, a new lumped-structure mechanism called CBM-Z was proposed, which extends the original framework to function properly at larger spatial and longer time scales.
Abstract: The lumped-structure approach for condensing organic chemical mechanisms is attractive, since it yields fewer species and reactions, and reduces computational costs. This paper leads through the development of a new lumped-structure mechanism, largely based on the widely used Carbon Bond Mechanism (CBM-IV) developed by Gery et al.[1989]. The new mechanism called CBM-Z, extends the original framework to function properly at larger spatial and longer time scales. The major modifications in the mechanism include: revised inorganic chemistry; explicit treatment of the lesser reactive paraffins - methane and ethane; revised parameterizations of the reactive paraffin, olefin and aromatic reactions; inclusion of alkyl and acyl peroxy radical interactions and their reactions with NO3; inclusion of organic nitrates and hydroperoxides; and refined isoprene chemistry based on the condensed one-product mechanism of Carter[1996a,b]. CBM-Z was successfully evaluated along with the CBM-IV, a partially revised CBM-IV and a revised RADM2 mechanism[Stockwell et al., 1990; Kirchner and Stockwell, 1996] using the low VOC and NOx concentration smog chamber experiments of Simonaitis et al.[1997]. Box-model versions of the four mechanisms were also evaluated under a variety of hypothetical urban and rural scenarios for a period of 30 days. Results from CBM-Z and revised RADM2 were found to bemore » within (+/-) 20% of each other, while CBM-IV and revised CBM-IV results deviated significantly by up to 50-95%. Sensitivity tests were performed to elucidate the effects of some of the new features added in CBM-Z. Relative computational memory and time requirements of these mechanisms are also discussed.« less

739 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements and describe the spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.
Abstract: We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.

Journal ArticleDOI
TL;DR: In this article, emissions of nitrous oxide from intensively managed agricultural fields were measured over three years and the relationship with the driving variables showed strong similarities to those reported for very different environments: irrigated sugar cane crops, pastures, and forest in the tropics.
Abstract: Emissions of nitrous oxide from intensively managed agricultural fields were measured over 3 years. Exponential increases in flux occurred with increasing soil water-filled pore space (WFPS) and temperature; increases in soil mineral N content due to fertilizer application also stimulated emissions. Fluxes were low when any of these variables was below a critical value. The largest fluxes occurred when WFPS values were very high (70-90%), indicating that denitrification was the major process responsible. The relationships with the driving variables showed strong similarities to those reported for very different environments: irrigated sugar cane crops, pastures, and forest in the tropics. Annual emissions varied widely (0.3-18.4 kg N 2 O-N ha -1 ). These variations were principally due to the degree of coincidence of fertilizer application and major rainfall events. It is concluded therefore that several years' data are required from any agricultural ecosystem in a variable climate to obtain a robust estimate of mean N 2 O fluxes. The emissions from small-grain cereals (winter wheat and spring barley) were consistently lower (0.2-0.7 kg N 2 O-N per 100 kg N applied) than from cut grassland (0.3-5.8 kg N 2 O-N per 100 kg N). Crops such as broccoli and potatoes gave emissions of the same order as those from the grassland. Although these differences between crop types are not apparent in general data comparisons, there may well be distinct regional differences in the relative and absolute emissions from different crops, due to local factors relating to soil type, weather patterns, and agricultural management practices. This will only be determined by more detailed comparative studies.

Journal ArticleDOI
TL;DR: In this paper, a combination of white noise and flicker noise appears to be the best model for the noise characteristics of all three position components of a GPS coordinate time series, with the white noise amplitudes smallest in the north component and largest in the vertical component.
Abstract: We assess the noise characteristics in time series of daily position estimates for 23 globally distributed Global Positioning System (GPS) stations with 3 years of data, using spectral analysis and Maximum Likelihood Estimation. A combination of white noise and flicker noise appears to be the best model for the noise characteristics of all three position components. Both white and flicker noise amplitudes are smallest in the north component and largest in the vertical component. The white noise part of the vertical component is higher for tropical stations (+23 o latitude) compared to midlatitude stations. Velocity error in a GPS coordinate time series may be underestimated by factors of 5-11 if a pure white noise model is assumed.

Journal ArticleDOI
TL;DR: In this paper, a series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol-forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation.
Abstract: A series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol-forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation. These compounds were also studied to elucidate the effect of structure on aerosol yield for these types of compounds. Because oxidation products partition between the gas and aerosol phases, the aerosol yields of the parent biogenic hydrocarbons depend on the concentration of organic aerosol into which these products can be absorbed. For organic mass concentrations between 5 and 40 µg m^(-3), mass-based yields in photooxidation experiments range from 17 to 67% for sesquiterpenes, from 2 to 23% for cyclic diolefins, from 2 to 15% for bicyclic olefins, and from 2 to 6% for the acyclic triolefin ocimene. In these photooxidation experiments, hydroxyl and nitrate radicals and ozone can contribute to consumption of the parent hydrocarbon. For bicyclic olefins (α-pinene, β-pinene, Δ^3-carene, and sabinene), experiments were also carried out at daytime temperatures in a dark system in the presence of ozone or nitrate radicals alone. For ozonolysis experiments, resulting aerosol yields are less dependent on organic mass concentration, when compared to full, sunlight-driven photooxidation. Nitrate radical experiments exhibit extremely high conversion to aerosol for β-pinene, sabinene, and Δ^3-carene. The relative importance of aerosol formation from each type of reaction for bicyclic olefin photooxidation is elucidated.

Journal ArticleDOI
TL;DR: In this article, the authors examined recent observations of water mass distribution and circulation schemes at different depths of the South Atlantic Ocean to propose a layered, qualitative representation of the mean distribution of flow in this region.
Abstract: We examine recent observations of water mass distribution and circulation schemes at different depths of the South Atlantic Ocean to propose a layered, qualitative representation of the mean distribution of flow in this region This furthers the simple upper layer geostrophic flow estimates of Peterson and Stramma [1991] In addition, we assess how well ocean general circulation models (GCMs) capture the overall structure of flow in the South Atlantic in this regard The South Atlantic Central Water (SACW) is of South Atlantic origin in the subtropical gyre, while the SACW in the tropical region in part originates from the South Indian Ocean The Antarctic Intermediate Water in the South Atlantic originates from a surface region of the circumpolar layer, especially in the northern Drake Passage and the Falkland Current loop, but also receives some water from the Indian Ocean The subtropical South Atlantic above the North Atlantic Deep Water and north of the Antarctic Circumpolar Current (ACC) is dominated by the anticyclonic subtropical gyre In the eastern tropical South Atlantic the cyclonic Angola Gyre exists, embedded in a large tropical cyclonic gyre The equatorial part of the South Atlantic shows several depth-dependent zonal current bands besides the Angola Gyre Ocean GCMs have difficulty capturing this detailed zonal circulation structure, even at eddy-permitting resolution The northward extent of the subtropical gyre reduces with increasing depth, located near Brazil at 16°S in the near-surface layer and at 26°S in the Antarctic Intermediate Water layer, while the tropical cyclonic gyre progresses southward The southward shift of the northern part of the subtropical gyre is well resolved in global ocean GCMs However, high horizontal resolution is required to capture the South Atlantic Current north of the ACC The North Atlantic Deep Water in the South Atlantic progresses mainly southward in the Deep Western Boundary Current, but some water also moves southward at the eastern boundary

Journal ArticleDOI
TL;DR: In this paper, emissions of carbonaceous aerosol from fossil fuel usage have been calculated with a resolution of 1° × 1° and the results are compared to measurements in regions influenced by anthropogenic fossil fuel emissions.
Abstract: Global-scale emissions of carbonaceous aerosol from fossil fuel usage have been calculated with a resolution of 1° × 1°. Emission factors for black and organic carbon have been gathered from the literature and applied to domestic, transport, and industrial combustion of various fuel types. In addition, allowance has been made for the level of development when calculating emissions from a country. Emissions have been calculated for 185 countries for the domestic, industrial, and transport sectors using a fuel usage database published by the United Nations [1993]. Some inconsistencies were found for a small number of countries with regard to the distribution of fuel usage between the industrial and domestic sectors. Care has been taken to correct for this using data from the fuel use database for the period 1970–1990. Emissions based on total particulate matter (TPM) and submicron emission factors have been calculated. Global emissions for 1984 of black carbon total 6.4 TgC yr−1 and organic carbon emissions of 10.1 TgC yr−1 were found using bulk aerosol emission factors, while global black carbon emissions of 5.1 TgC yr−1 and organic carbon emissions of 7.0 TgC yr−1 were found using submicron emission factors. Use of the database is quite flexible and can be easily updated as emission factor data are updated. There is at least a factor of 2 uncertainty in the derived emissions due to the lack of exactly appropriate emission data. The emission fields have been introduced into the ECHAM4 atmospheric general circulation model and run for 5 model years. Monthly mean model results are compared to measurements in regions influenced by anthropogenic fossil fuel emissions. The resultant aerosol fields have been used to calculate the instantaneous solar radiative forcing at the top of the troposphere due to an external mixture of fossil fuel derived black carbon and organic carbon aerosol. Column burdens of 0.143 mgBC m−2 and 0.170 mgOC m−2 were calculated. Because of secondary production of organic carbon aerosol, it is recommended that the burden of organic carbon aerosol be doubled to 0.341 mgOC m−2. The resultant forcing when clouds are included is +0.173 W m−2 for black carbon and −0.024 W m−2 for organic carbon (×2) as a global annual average. The results are compared to previous works, and the differences are discussed.

Journal ArticleDOI
TL;DR: In this article, the authors used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates.
Abstract: Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.

Journal ArticleDOI
TL;DR: In this paper, the authors used radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F.
Abstract: We use radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F The dependence of these irregularities on season, solar cycle, and magnetic activity can be explained as resulting from the corresponding effects on the evening and nighttime vertical drifts In the early night sector, the bottomside of the F layer is almost always unstable The evolution of the unstable layer is controlled by the history of the vertical drift velocity When the drift velocities are large enough, the necessary seeding mechanisms for the generation of strong spread F always appear to be present The threshold drift velocity for the generation of strong early night irregularities increases linearly with solar flux The geomagnetic control on the generation of spread F is season, solar cycle, and longitude dependent These effects can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance dynamo electric fields The occurrence of early night spread F decreases significantly during equinox solar maximum magnetically disturbed conditions due to disturbance dynamo electric fields which decrease the upward drift velocities near sunset The generation of late night spread F requires the reversal of the vertical velocity from downward to upward for periods longer than about half an hour These irregularities occur most often at ∼0400 local time when the prompt penetration and disturbance dynamo vertical drifts have largest amplitudes The occurrence of late night spread F is highest near solar minimum and decreases with increasing solar activity probably due to the large increase of the nighttime downward drifts with increasing solar flux

Journal ArticleDOI
TL;DR: Satellite passive-microwave data for November 1978 through December 1996 reveal marked seasonal, regional, and interannual variabilities, with an overall decreasing trend of −34,300±3700 km2/yr (−2.8%/decade) in Arctic sea ice extents over the 18.2-year period as mentioned in this paper.
Abstract: Satellite passive-microwave data for November 1978 through December 1996 reveal marked seasonal, regional, and interannual variabilities, with an overall decreasing trend of −34,300±3700 km2/yr (−2.8%/decade) in Arctic sea ice extents over the 18.2-year period. Decreases occur in all seasons and on a yearly average basis, although they are largest in spring and smallest in autumn. Regionally, the Kara and Barents Seas have the largest decreases, at −15,200±1900 km2/yr (−10.5%/decade), followed by the Seas of Okhotsk and Japan, the Arctic Ocean, Greenland Sea, Hudson Bay, and Canadian Archipelago. The yearly average trends for the total, the Kara and Barents Seas, and the Seas of Okhotsk and Japan all have high statistical significance, with the null hypothesis of a 0 slope being rejected at a 99% confidence level. Regions showing increasing yearly average ice extents are Baffin Bay/Labrador Sea, the Gulf of St. Lawrence, and the Bering Sea, with only the increases in the Gulf of St. Lawrence being statistically significant at the 99% level. Hemispheric results for sea ice areas exhibit the same −2.8%/decade decrease as for ice extents and hence a lower absolute decrease (−29,500±3800 km2/yr), with the ice-free area within the ice pack correspondingly decreasing at −4800±1600 km2/yr. Confidence levels for the trends in ice areas and ice-free water areas exceed 99% and 95%, respectively. Nonetheless, interannual variability is high, and, for instance, the Arctic Ocean ice extents have a positive trend 1990–1996, in spite of their negative trend for the time period as a whole.

Journal ArticleDOI
TL;DR: In this article, a purely physical model for the simulation of cosmic ray particle interactions with the Earth's atmosphere and subsequent production and transport of secondary particles is presented, using a GEANT/MCNP-based code system.
Abstract: A purely physical model for the simulation of cosmic ray particle interactions with the Earth's atmosphere and subsequent production and transport of secondary particles is presented. Neutron and proton spectra as a function of the coordinate in the atmosphere were calculated using a GEANT / MCNP-based code system. The calculated neutron fluxes are in good agreement with experimental data based on neutron monitor measurements. These fluxes, together with experimental or evaluated cross sections, were used to calculate the production rates of 3 H, 7 Be, 10 Be 14 C, and 36 Cl. The dependencies of these production rates on solar activity and geomagnetic field intensity were investigated in detail. The obtained production rates agree well with most published experimental and theoretical values. Possible reasons for some differences are discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors assume that gas hydrate behaves in a way analogous to ice in a freezing soil, and they predict that gas hydrates in a sequence of fine-grained sediments are inhibited by reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores.
Abstract: The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a “capillary pressure” in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This “freeze-drying” may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable presence of free gas within the normal zone of hydrate stability.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a new technique for tracking white-light coronal intensity features and used this technique to construct continuous height/time maps of coronal ejecta as they move outward through the 2-30 Rs field of view of the Large-Angle Spectrometric Coronagraph (LASCO) on the Solar and Heliospheric Observatory (SOHO) spacecraft.
Abstract: We have developed a new technique for tracking white-light coronal intensity features and have used this technique to construct continuous height/time maps of coronal ejecta as they move outward through the 2–30 Rs field of view of the Large-Angle Spectrometric Coronagraph (LASCO) on the Solar and Heliospheric Observatory (SOHO) spacecraft. Displayed as gray-scale images, these height/time maps provide continuous histories of the motions along selected radial paths in the corona and reveal a variety of accelerating and decelerating features, including two principal types of coronal mass ejections (CMEs): (1) Gradual CMEs, apparently formed when prominences and their cavities rise up from below coronal streamers: When seen broadside, these events acquire balloon-like shapes containing central cores, and their leading edges accelerate gradually to speeds in the range 400–600 km/s before leaving the 2–30 Rs field of view. The cores fall behind with speeds in the range 300–400 km/s. Seen along the line of sight, these events appear as smooth halos around the occulting disk, consistent with head-on views of optically thin bubbles stretched out from the Sun. At the relatively larger radial distances seen from this “head-on” perspective, gradually accelerating CMEs fade out sooner and seem to reach a constant speed more quickly than when seen broadside. Some suitably directed gradual CMEs are associated with interplanetary shocks and geomagnetic storms. (2) Impulsive CMEs, often associated with flares and Moreton waves on the visible disk: When seen broadside, these CMEs move uniformly across the 2–30 Rs field of view with speeds typically in excess of 750 km/s. At the relatively larger radial distances seen from a head-on perspective, impulsive events tend to have a more ragged structure than the gradual CMEs and show clear evidence of deceleration, sometimes reducing their speeds from 1000 to 500 km/s in 1 hour. Such decelerations are too large to represent ballistic motions in the Sun's gravitational field but might be caused by shock waves, sweeping up material far from the Sun.

Journal ArticleDOI
TL;DR: In this paper, daily aerosol sampling carried out at a coastal site in Miami, Florida, for the past 23 years shows that large quantities of African mineral dust are periodically carried into Florida every summer, yielding daily concentrations in the range of about 10 μgm−3 to 100 μg m−3.
Abstract: Continuous daily aerosol sampling carried out at a coastal site in Miami, Florida, for the past 23 years shows that large quantities of African mineral dust are periodically carried into Florida every summer, yielding daily concentrations in the range of about 10 μg m−3 to 100 μg m−3. Dust events typically last several days or longer. The maximum dust concentration occurs in July (monthly mean, 16.3 μg m−3), but relatively high concentrations are also observed in June (8.4 μg m−3) and August (9.8 μg m−3). There is considerable year-to-year variability that is apparently linked to various meteorological factors including climate conditions in North Africa as manifested by drought. Satellite data show that African dust incursions are synoptic-scale events; consequently, they will impact a large region of the southern and eastern United States. The incursion of dust events over this large region, coupled with inputs from local emissions, could have important implications regarding regional air quality.

Journal ArticleDOI
TL;DR: In this article, a semi-alytical, bio-optical model of remote sensing reflectance, Rrs(λ), was proposed for extracting chlorophyll concentration and phytoplankton and gelbstoff absorption coefficients from MODIS data.
Abstract: This paper describes algorithms for retrieval of chlorophyll a concentration and phytoplankton and gelbstoff absorption coefficients for the Moderate-Resolution Imaging Spectrometer (MODIS) or sensors with similar spectral channels. The algorithms are based on a semianalytical, bio-optical model of remote sensing reflectance, Rrs(λ). The Rrs(λ) model has two free variables, the absorption coefficient due to phytoplankton at 675 nm, aϕ(675), and the absorption coefficient due to gelbstoff at 400 nm, ag(400). The Rrs model has several parameters that are fixed or can be specified based on the region and season of the MODIS scene. These control the spectral shapes of the optical constituents of the model. Rrs(λi) values from the MODIS data processing system are placed into the model, the model is inverted, and aϕ(675), ag(400), and chlorophyll a are computed. The algorithm also derives the total absorption coefficients a(λi) and the phytoplankton absorption coefficients aϕ(λi) at the visible MODIS wavelengths. MODIS algorithms are parameterized for three different bio-optical domains: (1) high photoprotective pigment to chlorophyll ratio and low self-shading, which for brevity, we designate as “unpackaged”; (2) low photoprotective pigment to chlorophyll ratio and high self-shading, which we designate as “packaged”; and (3) a transitional or global-average type. These domains can be identified from space by comparing sea-surface temperature to nitrogen-depletion temperatures for each domain. Algorithm errors of more than 45% are reduced to errors of less than 30% with this approach, with the greatest effect occurring at the eastern and polar boundaries of the basins.

Journal ArticleDOI
TL;DR: In this article, the authors present a global empirical model for the F region equatorial vertical drifts based on combined incoherent scatter radar observations at Jicamarca and Ion Drift Meter observations on board the Atmospheric Explorer E satellite.
Abstract: We present the first global empirical model for the quiet time F region equatorial vertical drifts based on combined incoherent scatter radar observations at Jicamarca and Ion Drift Meter observations on board the Atmospheric Explorer E satellite. This analytical model, based on products of cubic-B splines and with nearly conservative electric fields, describes the diurnal and seasonal variations of the equatorial vertical drifts for a continuous range of all longitudes and solar flux values. Our results indicate that during solar minimum, the evening prereversal velocity enhancement exhibits only small longitudinal variations during equinox with amplitudes of about 15–20 m/s, is observed only in the American sector during December solstice with amplitudes of about 5–10 m/s, and is absent at all longitudes during June solstice. The solar minimum evening reversal times are fairly independent of longitude except during December solstice. During solar maximum, the evening upward vertical drifts and reversal times exhibit large longitudinal variations, particularly during the solstices. In this case, for a solar flux index of 180, the June solstice evening peak drifts maximize in the Pacific region with drift amplitudes of up to 35 m/s, whereas the December solstice velocities maximize in the American sector with comparable magnitudes. The equinoctial peak velocities vary between about 35 and 45 m/s. The morning reversal times and the daytime drifts exhibit only small variations with the phase of the solar cycle. The daytime drifts have largest amplitudes between about 0900 and 1100 LT with typical values of 25–30 m/s. We also show that our model results are in good agreement with other equatorial ground-based observations over India, Brazil, and Kwajalein.

Journal ArticleDOI
TL;DR: In this paper, the optical properties of graphitic carbon grains in diesel soot at a wavelength of 0.550 μm were investigated and the authors concluded that 10 m2/g may be over 50% too high in many cases, and suggested that the mass absorption coefficient for the light-absorbing carbon in diesel-soot at 0.5-4 for hosts with refractive indices ranging from 1.33-1.53, respectively, and radii ≳ 0.20 μm.
Abstract: Reported values for the absorption cross section of particulate carbon per unit mass range from under 4 to over 20 m2/g, and the intermediate value of 10 m2/g is used by many as a standard gram-specific absorption cross section for atmospheric soot. In order to better understand the possible variations in absorption by atmospheric carbon, we reevaluated its optical properties in terms of the material composition and morphology of soot and the electrodynamics of spherules agglomerated into loose (ramiform) aggregates. Primary particles ranging in composition from paracrystalline graphite to low-density air/graphite volume mixtures are considered. The effects on extinction efficiency of aggregation and of internal mixing of carbon with sulfate are considered in detail. We also compare our results with estimates of specific absorption of internally mixed soot that are based on several homogeneous mixing rules (effective medium approximations), On the basis of our modeling of the optical properties of aggregates of graphitic carbon grains, we conclude that 10 m2/g may be over 50% too high in many cases, and we suggest that the mass absorption coefficient for the light-absorbing carbon in diesel soot at a wavelength of 0.550 μm may often be less than 7 m2/g, although variations in optical constants and, especially, the specific gravity of the absorbing material make it difficult to assign a specific numerical value. Adhesion of carbon grains to sulfate droplet surfaces is expected to enhance their absorption by no more than about 30%. Soot randomly positioned within droplets, however, can display averaged absorption enhancement factors of about 2.5–4 for hosts with refractive indices ranging from 1.33–1.53, respectively, and radii ≳0.20 μm. Nonetheless, calculations indicate that for realistic dry particle populations, αa < 10 m2/g for graphitic carbon in the atmosphere unless (1) most of it is encapsulated, and (2) the geometric mean radius of the hosts is larger than about 0.06 μm (which corresponds to a mass median diameter of 0.34 μm). These results suggest the importance of the determination of the physical state of the soot particles and their immediate environment when ascribing characteristic values for their absorption and scattering efficiencies.

Journal ArticleDOI
TL;DR: In this paper, the mesoscale Eta-LSS model was extended to account for seasonal freezing and thawing of soils and snow-accumulation-ablation processes.
Abstract: Extensions to the land surface scheme (LSS) in the National Centers for Environmental Prediction, regional, coupled, land-atmosphere weather prediction model, known as the mesoscale Eta model, are proposed and tested off-line in uncoupled mode to account for seasonal freezing and thawing of soils and snow-accumulation-ablation processes. An original model assumption that there is no significant heat transfer during redistribution of liquid water was relaxed by including a source/sink term in the heat transfer equation to account for latent heat during phase transitions of soil moisture. The parameterization uses the layer-integrated form of heat and water diffusion equations adopted by the original Eta-LSS. Therefore it simulates the total ice content of each selected soil layer. Infiltration reduction under frozen ground conditions was estimated by probabilistic averaging of spatially variable ice content of the soil profile. Off-line uncoupled tests of the new and original Eta-LSS were performed using experimental data from Rosemount, Minnesota. Simulated soil temperature and unfrozen water content matched observed data reasonably well. Neglecting frozen ground processes leads to significant underestimation/overestimation of soil temperature during soil freezing/thawing periods and underestimates total soil moisture content after extensive periods of soil freezing.

Journal ArticleDOI
TL;DR: In this paper, the authors simulate the lowering of ancient river profiles using the finite difference method to match the evolved profile as closely as possible to the corresponding modern river profile over a time period constrained by the age of the mapped paleoprofiles.
Abstract: Denudation rate in unextended terranes is limited by the rate of bedrock channel incision, often modeled as work rate on the channel bed by water and sediment, or stream power. The latter can be generalized as KA m S n , where K represents the channel bed's resistance to lowenng (whose variation with lithology is unknown), A is drainage area (a surrogate for discharge), S is local slope, and m and n are exponents whose values are debated. We address these uncertainties by simulating the lowering of ancient river profiles using the finite difference method. We vary m, n, and K to match the evolved profile as closely as possible to the corresponding modern river profile over a time period constrained by the age of the mapped paleoprofiles. We find at least two end-member incision laws, KA 0.3-0.5 S for Australian rivers with stable base levels and K f A 0.1-0.2 S n for rivers in Kauai subject to abrupt base level change. The long-term lowering rate on the latter expression is a function of the frequency and magnitude of knickpoint erosion, characterized by K f Incision patterns from Japan and California could follow either expression. If they follow the first expression with m = 0.4, K varies from 10 -7 -10 -6 m 0.2 /yr for granite and metamorphic rocks to 10 -5 -10 -4 m 0.2 /yr for volcaniclastic rocks and 10 -4 -10 -2 m 0.2 /yr for mudstones. This potentially large variation in K with lithology could drive strong variability in the rate of long-term landscape change, including denudation rate and sediment yield.

Journal ArticleDOI
TL;DR: In this paper, a new set of guidelines has been developed for assessing the emissions of sulphur, nitrogen oxides, NH3, CH4, and nonmethane volatile organic compounds (NMVOC) from biogenic and other natural sources in Europe.
Abstract: As part of the work of the Economic Commission for Europe of the United Nations Task Force on Emission Inventories, a new set of guidelines has been developed for assessing the emissions of sulphur, nitrogen oxides, NH3, CH4, and nonmethane volatile organic compounds (NMVOC) from biogenic and other natural sources in Europe. This paper gives the background to these guidelines, describes the sources, and gives our recommended methodologies for estimating emissions. We have assembled land use and other statistics from European or national compilations and present emission estimates for the various natural/biogenic source categories based on these. Total emissions from nature derived here amount to ∼1.1 Tg S yr−1, 6–8 Tg CH4 yr−1, 70 Gg NH3 (as N) yr−1, and 13 Tg NMVOC yr−1. Estimates of biogenic NO x emissions cover a wide range, from 140 to 1500 Gg NO x (as N) yr−1. In terms of relative contribution to total European emissions for different pollutants, then NMVOC from forests and vegetation are clearly the most important emissions source. Biogenic NO x emissions (although heavily influenced by nitrogen inputs from anthropogenic activities) are very important if the higher estimates are reliable. CH4 from wetlands and sulphur from volcanoes are also significant emissions in the European budgets. On a global scale, European biogenic emissions are not significant, a consequence of the climate and size (7% of global land area) of Europe and of the destruction of natural ecosystems since prehistoric times. However, for assessing local budgets and for photochemical oxidant modeling, natural/biogenic emissions can play an important role. The most important contributor in this regard is undoubtedly forest VOC emissions, although this paper also indicates that NMVOC emissions from nonforested areas also need to be further evaluated. This paper was originally conceived as a contribution to the collection of papers arising as a result of the Workshop on Biogenic Hydrocarbons in the Atmospheric Boundary Layer, August 24–27, 1997. (Several papers arising from this workshop have been published in Journal of Geophysical Research, 103(D19) 1998.)

Journal ArticleDOI
TL;DR: In this paper, an energy-conserving sea ice model for climate study that accounts for the effect of internal brine-pocket melting on surface ablation is introduced. But, the model does not conserve energy during the summer melt season.
Abstract: We introduce an energy-conserving sea ice model for climate study that accounts for the effect of internal brine-pocket melting on surface ablation Sea ice models that parameterize latent heat storage in brine pockets often fail to reduce the energy required for surface ablation in proportion to the internal melting that has already occurred These models do not conserve energy during the summer melt season Compared with our energy-conserving model, a nonconserving model underestimates top-surface ablation of multiyear ice by 12–22% and overestimates the equilibrium ice thickness by 50–124 cm In addition, a nonconserving model is less sensitive to perturbative forcing than our energy-conserving model is: The equilibrium thickness changes 22–44% less owing to surface albedo perturbations and 13–31% less owing to downward longwave radiation perturbations The smaller differences are associated with a model that has a time-independent, vertically varying salinity profile, and the larger differences are associated with a model that assumes the ice is isosaline with a salinity of 32‰ Simulations with a vertically varying salinity profile have low salinity at the top surface compared to isosaline cases, which leads to reduced heat conduction, less internal brine-pocket melting, and more surface ablation