scispace - formally typeset
Journal ArticleDOI

Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs

TLDR
In this article, the authors explore the stream power erosion model in an effort to elucidate its consequences in terms of large-scale topographic (fluvial) relief and its sensitivity to tectonic and climatic forcing.
Abstract
The longitudinal profiles of bedrock channels are a major component of the relief structure of mountainous drainage basins and therefore limit the elevation of peaks and ridges. Further, bedrock channels communicate tectonic and climatic signals across the landscape, thus dictating, to first order, the dynamic response of mountainous landscapes to external forcings. We review and explore the stream-power erosion model in an effort to (1) elucidate its consequences in terms of large-scale topographic (fluvial) relief and its sensitivity to tectonic and climatic forcing, (2) derive a relationship for system response time to tectonic perturbations, (3) determine the sensitivity of model behavior to various model parameters, and (4) integrate the above to suggest useful guidelines for further study of bedrock channel systems and for future refinement of the streampower erosion law. Dimensional analysis reveals that the dynamic behavior of the stream-power erosion model is governed by a single nondimensional group that we term the uplift-erosion number, greatly reducing the number of variables that need to be considered in the sensitivity analysis. The degree of nonlinearity in the relationship between stream incision rate and channel gradient (slope exponent n) emerges as a fundamental unknown. The physics of the active erosion processes directly influence this nonlinearity, which is shown to dictate the relationship between the uplift-erosion number, the equilibrium stream channel gradient, and the total fluvial relief of mountain ranges. Similarly, the predicted response time to changes in rock uplift rate is shown to depend on climate, rock strength, and the magnitude of tectonic perturbation, with the slope exponent n controlling the degree of dependence on these various factors. For typical drainage basin geometries the response time is relatively insensitive to the size of the system. Work on the physics of bedrock erosion processes, their sensitivity to extreme floods, their transient responses to sudden changes in climate or uplift rate, and the scaling of local rock erosion studies to reach-scale modeling studies are most sorely needed.

read more

Citations
More filters
Book ChapterDOI

Tectonics from topography: Procedures, promise, and pitfalls

TL;DR: In this article, a method for extracting topographic indices of longitudinal profi le shape and character from digital topographic data is described, which can then be used to delineate breaks in scaling that may be associated with tectonic boundaries.
Journal ArticleDOI

Bedrock rivers and the geomorphology of active orogens

TL;DR: The results of intense research in the past decade are reviewed in this article, with the aim of highlighting remaining unknowns and suggesting fruitful avenues for further research, including the role of climate-driven denudation in the evolution of orogens.
Journal ArticleDOI

Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates.

TL;DR: It is suggested that climate affected erosion mainly by the transition from a period of climate stability, in which landscapes had attained equilibrium configurations, to a time of frequent and abrupt changes in temperature, precipitation and vegetation, which prevented fluvial and glacial systems from establishing equilibrium states.
Journal ArticleDOI

Links between erosion, runoff variability and seismicity in the Taiwan orogen

TL;DR: Erosion rates in the Taiwan mountains are estimated from modern river sediment loads, Holocene river incision and thermochronometry on a million-year scale and the pattern of erosion has changed over time in response to the migration of localized tectonic deformation.
Journal ArticleDOI

Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California

TL;DR: In this article, the authors evaluate and calibrate the shear stress (or similar unit stream-power) bedrock-incision model by studying stream profiles in a tectonically active mountain range.
References
More filters
Book

The hydraulic geometry of stream channels and some physiographic implications

TL;DR: In this paper, the hydraulic characteristics of stream channels are measured quantitatively and vary with discharge as simple power functions at a given river cross section, and similar variations in relation to discharge exist among the cross sections along the length of a river under the condition that discharge at all points is equal in frequency of occurrence.
Journal ArticleDOI

Tectonic forcing of late Cenozoic climate

TL;DR: In particular, tectonically driven increases in chemical weathering may have resulted in a decrease of atmospheric C02 concentration over the past 40 Myr as discussed by the authors. But this was not shown to be the case for the uplift of the Tibetan plateau and positive feedbacks initiated by this event.
Journal ArticleDOI

Magnitude and Frequency of Forces in Geomorphic Processes

TL;DR: The relative importance in geomorphic processes of extreme or catastrophic events and more frequent events of smaller magnitude can be measured in terms of the relative amounts of "work" done on the landscape and the formation of specific features of the landscape as discussed by the authors.
Journal ArticleDOI

Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?

TL;DR: The high altitude of most mountain ranges have commonly been ascribed to late Cenozoic uplift, without reference to when crustal thickening and other tectonic processes occurred as mentioned in this paper.
Related Papers (5)