scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Virology in 1995"


Journal ArticleDOI
TL;DR: In vivo mutation rates for HIV-1 are three and seven times higher than those previously reported for two other retroviruses, spleen necrosis virus and bovine leukemia virus, respectively, and the calculated in vivo mutation rate is about 20-fold lower than the error rate of purified HIV- 1 reverse transcriptase, with the same target sequence.
Abstract: The level of genetic variation of human immunodeficiency virus type 1 (HIV-1), a member of the lentivirus genus of the Retroviridae family, is high relative to that of retroviruses in some other genera. The high error rates of purified HIV-1 reverse transcriptase in cell-free systems suggest an explanation for this high genetic variation. To test whether the in vivo rate of mutation during reverse transcription of HIV-1 is as high as predicted by cell-free studies, and therefore higher than that rates of mutation of retroviruses in other genera, we developed an in vivo assay for detecting forward mutations in HIV-1, using the lacZ alpha peptide gene as a reporter for mutations. This system allows the rates and types of mutations that occur during a single cycle of replication to be studied. We found that the forward mutation rate for HIV-1 was 3.4 x 10(-5) mutations per bp per cycle. Base substitution mutations predominated; G-to-A transition mutations were the most common base substitution. The in vivo mutation rates for HIV-1 are three and seven times higher than those previously reported for two other retroviruses, spleen necrosis virus and bovine leukemia virus, respectively. In contrast, our calculated in vivo mutation rate for HIV-1 is about 20-fold lower than the error rate of purified HIV-1 reverse transcriptase, with the same target sequence. This finding indicates that HIV-1 reverse transcription in vivo is not as error prone as predicted from the fidelity of purified reverse transcriptase in cell-free studies. Our data suggest that the fidelity of purified HIV-1 reverse transcriptase may not accurately reflect the level of genetic variation in a natural infection.

1,170 citations


Journal ArticleDOI
TL;DR: This study has used mice deficient in immunological effector functions in combination with adoptive and passive transfer techniques to define antigen-specific cellular and humoral immune responses that underlie immunological barriers to gene therapy of cystic fibrosis.
Abstract: Recombinant adenoviruses are an attractive vehicle for gene therapy to the lung in the treatment of cystic fibrosis (CF). First-generation viruses deleted of E1a and E1b transduce genes into airway epithelial cells in vivo; however, expression of the transgene is transient and associated with substantial inflammatory responses, and gene transfer is significantly reduced following a second administration of the virus. In this study, we have used mice deficient in immunological effector functions in combination with adoptive and passive transfer techniques to define antigen-specific cellular and humoral immune responses that underlie these important limitations. Our studies indicate that major histocompatibility complex class I-restricted CD8+ cytotoxic T lymphocytes are activated in response to newly synthesized antigens, leading to destruction of virus infected cells and loss of transgene expression. Major histocompatibility complex class II-associated presentation of exogenous viral antigens activates CD4+ T-helper (TH) cells of the TH1 subset and, to a lesser extent, of the TH2 subset. CD4+ cell-mediated responses are insufficient in the absence of cytotoxic T cells to completely eliminate transgene containing cells; however, they contribute to the formation of neutralizing antibodies in the airway which block subsequent adenovirus-mediated gene transfer. Definition of immunological barriers to gene therapy of cystic fibrosis should facilitate the design of rational strategies to overcome them.

1,164 citations


Journal ArticleDOI
TL;DR: It is shown here that Vpr arrests the cell cycle in G2 by preventing the activation of the p34cdc2/cyclin B complex that is required for entry into M phase, and in vivo, Vpr might, by preventing p34CDc2 activation, delay or prevent apoptosis of infected cells.
Abstract: The Vpr accessory gene product of human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus is believed to play a role in permitting entry of the viral core into the nucleus of nondividing cells. A second role for Vpr was recently suggested by Rogel et al. (M. E. Rogel, L. I. Wu, and M. Emerman, J. Virol. 69:882-888, 1995), who showed that Vpr prevents the establishment in vitro of chronically infected HIV producer cell lines, apparently by causing infected cells to arrest in the G2/M phase of the cell cycle. In cycling cells, progression from G2 to M phase is driven by activation of the p34cdc2/cyclin B complex, an event caused, in part, by dephosphorylation of two regulatory amino acids of p34cdc2 (Thr-14 and Tyr-15). We show here that Vpr arrests the cell cycle in G2 by preventing the activation of the p34cdc2/cyclin B complex. Vpr expression in cells caused p34cdc2 to remain in the phosphorylated, inactive state, p34cdc2/cyclin B complexes immunoprecipitated from cells expressing Vpr were almost completely inactive in a histone H1 kinase assay. Coexpression of a constitutively active mutant p34cdc2 molecule with Vpr relieved the G2 arrest. These findings strongly suggest that Vpr arrests cells in G2 by preventing the activation of the p34cdc2/cyclin B complex that is required for entry into M phase. In vivo, Vpr might, by preventing p34cdc2 activation, delay or prevent apoptosis of infected cells. This would increase the amount of virus each infected cell produced.

916 citations


Journal ArticleDOI
TL;DR: Direct comparison with previous retroviral packaging systems indicated that 100-fold-higher titers of helper-free recombinant viruses were released by the FLYA13 and FLYRD18 lines.
Abstract: Novel retroviral protein expression constructs were designed to retain minimal retroviral sequences and to express dominant selectable markers by reinitiation of translation after expression of the viral genes. HT1080 cells were selected as producer cells for their ability to release high-titer viruses that are resistant to inactivation by human serum. Two HT1080-based packaging cell lines which produce Moloney murine leukemia virus cores with envelope glycoproteins of either amphotropic murine leukemia virus (FLYA13 line) or cat endogenous virus RD114 (FLYRD18 line) are described. Direct comparison with previous retroviral packaging systems indicated that 100-fold-higher titers of helper-free recombinant viruses were released by the FLYA13 and FLYRD18 lines.

724 citations


Journal ArticleDOI
TL;DR: Results indicate that TDP-43 is capable of modulating both in vitro and in vivo HIV-1 gene expression by either altering or blocking the assembly of transcription complexes that are capable of responding to Tat.
Abstract: Human immunodeficiency virus type 1 (HIV-1) gene expression is modulated by both viral and cellular factors. A regulatory element in the HIV-1 long terminal repeat known as TAR, which extends from nucleotides -18 to +80, is critical for the activation of gene expression by the transactivator protein, Tat. RNA transcribed from TAR forms a stable stem-loop structure which serves as the binding site for both Tat and cellular factors. Although TAR RNA is critical for Tat activation, the role that TAR DNA plays in regulating HIV-1 gene expression is not clear. Several studies have demonstrated that TAR DNA can bind cellular proteins, such as UBP-1/LBP-1, which repress HIV-1 gene expression and other factors which are involved in the generation of short, nonprocessive transcripts. In an attempt to characterize additional cellular factors that bind to TAR DNA, a lambda gt11 expression cloning strategy involving the use of a portion of TAR DNA extending from -18 to +28 to probe a HeLa cDNA library was used. We identified a cDNA, designated TAR DNA-binding protein (TDP-43), which encodes a cellular factor of 43 kDa that binds specifically to pyrimidine-rich motifs in TAR. Antibody to TDP-43 was used in gel retardation assays to demonstrate that endogenous TDP-43, present in HeLa nuclear extract, also bound to TAR DNA. Although TDP-43 bound strongly to double-stranded TAR DNA via its ribonucleoprotein protein-binding motifs, it did not bind to TAR RNA extending from +1 to +80. To determine the function of TDP-43 in regulating HIV-1 gene expression, in vitro transcription analysis was performed. TDP-43 repressed in vitro transcription from the HIV-1 long terminal repeat in both the presence and absence of Tat, but it did not repress transcription from other promoters such as the adenovirus major late promoter. In addition, transfection of a vector which expressed TDP-43 resulted in the repression of gene expression from an HIV-1 provirus. These results indicate that TDP-43 is capable of modulating both in vitro and in vivo HIV-1 gene expression by either altering or blocking the assembly of transcription complexes that are capable of responding to Tat.

707 citations


Journal ArticleDOI
TL;DR: It is concluded that native VLPs can induce antibody-mediated, type-specific protection against experimental papillomavirus infection against CRPV challenge.
Abstract: We tested the ability of vaccination with virus-like particles (VLPs) to protect domestic rabbits against papillomas induced by the cottontail rabbit papillomavirus (CRPV). A recombinant baculovirus system that expressed only the L1 major papillomavirus structural protein or L1 plus the minor L2 protein was used in insect cells as the source of VLPs. Groups of 10 rabbits were immunized with native or denatured VLPs from CRPV or type 1 bovine papillomavirus by using Freund's adjuvant. Alum was used as the adjuvant for an additional group immunized with CRPV L1-L2 VLPs. Animals were challenged with 5 x 10(10) and 2 x 10(11) particles on opposing flanks. No protection was seen in rabbits immunized with native or denatured bovine papillomavirus L1-L2 or with denatured CRPV L1-L2. In these groups, the lower and higher challenge doses resulted in 27 of 30 animals with extensive papillomas, with each of the remaining animals having a smaller number of persistent papillomas. Progression to carcinoma developed in 20 rabbits. Animals inoculated with native CRPV VLPs composed of L1 alone or L1-L2 developed many fewer lesions; the lower and higher challenge doses resulted in 17 of 29 and 5 of 29 rabbits, respectively, with no lesions, and the remainder developed only one to eight papillomas, which all regressed except for those on 1 rabbit. None developed cancer within 1 year of infection. Rabbits vaccinated with native CRPV VLPs developed high-titer antibodies in an enzyme-linked immunosorbent assay based on native VLPs, and passive transfer of serum or immunoglobulin G from rabbits immunized with CRPV VLPs protected against CRPV challenge. We conclude that native VLPs can induce antibody-mediated, type-specific protection against experimental papillomavirus infection.

619 citations


Journal ArticleDOI
TL;DR: Hepatitis B virus transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology, creating the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and assess the antiviral potential of pharmacological agents and physiological processes, including the immune response.
Abstract: Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response.

616 citations


Journal ArticleDOI
TL;DR: Clonal populations of human cervical epithelial cells which harbor multiple copies of either extrachromosomal or integrated viral DNA correlate with increased viral gene expression and cellular growth advantage, consistent with the hypothesis that integration provides a selective advantage to cervical epithelium precursors of cervical carcinoma.
Abstract: Integration of human papillomavirus type 16 (HPV-16) DNA into a host chromosome has been hypothesized to result in altered expression of two viral transforming genes, E6 and E7, in cervical cancers. In order to investigate the role that changes in viral genomic state and gene expression play in cervical carcinogenesis, we have derived clonal populations of human cervical epithelial cells which harbor multiple copies of either extrachromosomal or integrated viral DNA. The clonal populations harboring extrachromosomal HPV-16 DNA stably maintained approximately 1,000 viral copies for at least 15 passages (approximately 100 cell doublings), which contrasted with the unstable HPV-16 replicons in the parental counterpart. In the clonal populations harboring integrated viral DNA, 3 to 60 copies of HPV-16 DNA were found integrated in either of two forms: type 1, in which all the copies of HPV-16 DNA were disrupted in the E2 open reading frame upon integration, and type 2, in which intact viral copies were flanked by disrupted viral copies and cellular sequences. Despite the lower HPV-16 DNA copy number, the clonal populations with integrated viral DNA had levels of E7 protein that were in most cases higher than those found in the clonal populations harboring extrachromosomal viral DNA. Irrespective of viral genomic state, the clonal populations were capable of undergoing terminal differentiation and unable to form colonies in soft agar, which is indicative of the nontumorigenic nature of these cells. Importantly, a cell population with integrated viral DNA was found to outgrow another with extrachromosomal DNA when these cells were cocultured over a period of time. Thus, integration of human papillomaviral DNA correlates with increased viral gene expression and cellular growth advantage. These observations are consistent with the hypothesis that integration provides a selective advantage to cervical epithelial precursors of cervical carcinoma.

577 citations


Journal ArticleDOI
TL;DR: It is shown that infected cells are unable to progress normally through the cell cycle and became arrested in the G2 + M phase and the HIV-1 vpr gene product is identified as being both necessary and sufficient for eliciting this cell cycle arrest.
Abstract: Human immunodeficiency virus type 1 (HIV-1) infection causes profound immunological defects in afflicted patients. Various mechanisms have been proposed to account for the immune dysfunction in AIDS ultimately leading to loss of CD4+ T cells, including HIV-1 envelope-mediated syncytium formation, apoptosis, and cytokine modulation. Here we present results which suggest a novel hypothesis for T-cell dysfunction. We show, using HIV-1 bearing a novel cell surface reporter gene, that infected cells are unable to progress normally through the cell cycle and became arrested in the G2 + M phase. Furthermore, we identify the HIV-1 vpr gene product as being both necessary and sufficient for eliciting this cell cycle arrest. Cell cycle arrest induced by Vpr correlates with an increase in the hyperphosphorylated (inactive) form of the cyclin-dependent serine/threonine kinase CDC2, consistent with an arrest of cells at the boundary of G2 and M.

538 citations


Journal ArticleDOI
TL;DR: In this paper, the authors found that lack of disease in long-term non-progressors with human immunodeficiency virus type 1 (HIV-1) infection was strongly associated with very low copy numbers of HIV-1 DNA and RNA in peripheral blood mononuclear cells and plasma and the presence of high levels of anti-HIV1 CD8+ memory cytotoxic T lymphocytes specific for Gag, Pol, and Env, compared with levels present in intermediate and advanced progressors.
Abstract: Lack of disease in long-term nonprogressors with human immunodeficiency virus type 1 (HIV-1) infection was strongly associated with very low copy numbers of HIV-1 DNA and RNA in peripheral blood mononuclear cells and plasma and the presence of high levels of anti-HIV-1 CD8+ memory cytotoxic T lymphocytes specific for Gag, Pol, and Env, compared with levels present in intermediate and advanced progressors. CD8+ memory cytotoxic T lymphocytes may have an important role in controlling HIV-1 replication and preventing disease in long-term nonprogressors.

526 citations


Journal ArticleDOI
TL;DR: The data show that a vaccine based on the induction of humoral immunity that is broadly active across the genetic clades is not impossible if immunogens that express the epitopes for MAbs such as 2F5, 2G12, and IgG1b12 in immunogenic configurations can be created.
Abstract: We have tested three human monoclonal antibodies (MAbs) IgG1b12, 2G12, and 2F5) to the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1), and a tetrameric CD4-IgG molecule (CD4-IgG2), for the ability to neutralize primary HIV-1 isolates from the genetic clades A through F and from group O. Each of the reagents broadly and potently neutralized B-clade isolates. The 2F5 MAb and the CD4-IgG2 molecule also neutralized strains from outside the B clade, with the same breadth and potency that they showed against B-clade strains. The other two MAbs were able to neutralize a significant proportion of strains from outside the B clade, although there was a reduction in their efficacy compared with their activity against B-clade isolates. Neutralization of isolates by 2F5 correlated with their possession of the LDKW motif in a segment of gp41 near the membrane-spanning domain. The other two MAbs and CD4-IgG2 recognize discontinuous binding sites on gp120, and so no comparison between genetic sequence and virus neutralization was possible. Our data show that a vaccine based on the induction of humoral immunity that is broadly active across the genetic clades is not impossible if immunogens that express the epitopes for MAbs such as 2F5, 2G12, and IgG1b12 in immunogenic configurations can be created. Furthermore, if the three MAbs and CD4-IgG2 produce clinical benefit in immunotherapeutic trials in the United States or Europe, they may also do so elsewhere in the world.

Journal ArticleDOI
TL;DR: It is demonstrated that mutational inactivation of the viral protease reverses the p6 defect, suggesting a functional linkage between p6 and the proteolytic processing of the Gag precursor protein during the budding of progeny virions.
Abstract: The human immunodeficiency virus type 1 (HIV-1) Gag protein precursor, Pr55Gag, contains at its C-terminal end a proline-rich, 6-kDa domain designated p6. Two functions have been proposed for p6: incorporation of the HIV-1 accessory protein Vpr into virus particles and virus particle production. To characterize the role of p6 in the HIV-1 life cycle and to map functional domains within p6, we introduced a number of nonsense and single and multiple amino acid substitution mutations into p6. Following the introduction of the mutations into the full-length HIV-1 molecular clone pNL4-3, the effects on Gag protein expression and processing, virus particle production, and virus infectivity were analyzed. The production of mutant virus particles was also examined by transmission electron microscopy. The results indicate that (i) p6 is required for efficient virus particle production from a full-length HIV-1 molecular clone; (ii) a Pro-Thr-Ala-Pro sequence, located between residues 7 and 10 of p6, is critical for virus particle production; (iii) mutations outside the Pro-Thr-Ala-Pro motif have little or no effect on virus assembly and release; (iv) the p6 defect is manifested at a late stage in the budding process; and (v) mutations in p6 that severely reduce virion production in HeLa cells also block or significantly delay the establishment of a productive infection in the CEM (12D-7) T-cell line. We further demonstrate that mutational inactivation of the viral protease reverses the p6 defect, suggesting a functional linkage between p6 and the proteolytic processing of the Gag precursor protein during the budding of progeny virions.

Journal ArticleDOI
TL;DR: It is suggested that HBV genomes with C gene deletions can have a selective advantage in immunosuppressed patients and the potential for the structural and functional characterization of heterogeneous populations of complete virion-encapsidated HBV DNAs is demonstrated.
Abstract: Current knowledge of hepatitis B virus (HBV) sequence heterogeneity is based mainly on sequencing of amplified subgenomic HBV fragments. Here, we describe a method which allows sensitive amplification and simplified functional analysis of full-length HBV genomes with or without prior cloning. By this method, a large number of HBV genomes were cloned from sera of six immunosuppressed kidney transplant patients. Two size classes of HBV genomes, one 3.2 kb and another about 2.0 kb in size, were found in all patients. The genome population from one serum sample was studied in detail by size analysis of subgenomic PCR fragments and sequencing. Regions with deletions and insertions were mapped in the C gene and pre-S region. Up to 100% of HBV genomes in all other immunosuppressed patients also had deletions in the C gene. Our results demonstrate the potential of the established method for the structural and functional characterization of heterogeneous populations of complete virion-encapsidated HBV DNAs and suggest that HBV genomes with C gene deletions can have a selective advantage in immunosuppressed patients.

Journal ArticleDOI
TL;DR: The results suggest a new physiological role for the IE1 and IE2 proteins in the human cytomegalovirus replication cycle.
Abstract: Human cytomegalovirus-infected fibroblasts are resistant to the induction of apoptosis by superinfection with a mutant adenovirus unable to produce the viral E1B 19-kDa protein that normally causes an E1A protein-mediated apoptotic response. Two cytomegalovirus gene products that block apoptosis were identified. The IE1 and IE2 proteins each inhibit the induction of apoptosis by tumor necrosis factor alpha or by the E1B 19-kDa-protein-deficient adenovirus but not by irradiation with UV light. Our results suggest a new physiological role for the IE1 and IE2 proteins in the human cytomegalovirus replication cycle.

Journal ArticleDOI
TL;DR: The results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute toCD4-induced gp120 conformational changes detected by the 17b, 48d, and A32 antibodies.
Abstract: The binding of human immunodeficiency virus type 1 (HIV-1) to the cellular receptor CD4 has been suggested to induce conformational changes in the viral envelope glycoproteins that promote virus entry. Conserved, discontinuous epitopes on the HIV-1 gp120 glycoprotein recognized by the 17b, 48d, and A32 antibodies are preferentially exposed upon the binding of soluble CD4 (sCD4). The binding of the 17b and 48d antibodies to the gp120 glycoprotein can also be enhanced by the binding of the A32 antibody. Here we constructed HIV-1 gp120 mutants in which the variable segments of the V1/V2 and V3 structures were deleted, individually or in combination, while the 17b, 48d, and A32 epitopes were retained. The effects of the variable loop deletions on the function of the HIV-1 envelope glycoproteins and on the exposure of epitopes induced by sCD4 or A32 binding to the monomeric gp120 glycoprotein were examined. The variable-loop-deleted envelope glycoproteins were able to mediate virus entry, albeit at lower efficiencies than those of the wild-type glycoproteins. Thus, the V1/V2 and V3 variable sequences contribute to the efficiency of HIV-1 entry but are not absolutely required for the process. Neither the V1/V2 nor V3 loops were necessary for the increase in exposure of the 17b/48d epitopes induced by binding of the A32 monoclonal antibody. By contrast, induction of the 17b, 48d, and A32 epitopes by sCD4 binding apparently involves a movement of the V1/V2 loops, which in the absence of CD4 partially mask these epitopes on the native gp120 monomer. The results obtained with a mutant glycoprotein containing a deletion of the V1 loop alone indicated that the contribution of the V2 loop to these phenomena was more significant than that of the V1 sequences. These results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute to CD4-induced gp120 conformational changes detected by the 17b, 48d, and A32 antibodies.

Journal ArticleDOI
TL;DR: It is shown that although Vpr has no effect on the initial cytopathic effect of HIV-1, viruses that contain an intact vPR gene are unable to establish a chronic infection of T cells, however, virus with a mutated vpr gene can readily establish such long-term cultures.
Abstract: Human immunodeficiency virus type 1 (HIV-1) is a retrovirus that can cause extensive cytopathicity in T cells. However, long-term productive infection of T-cell lines has been described. Here we show that although Vpr has no effect on the initial cytopathic effect of HIV-1, viruses that contain an intact vpr gene are unable to establish a chronic infection of T cells. However, virus with a mutated vpr gene can readily establish such long-term cultures. The effect of Vpr is independent of the env gene and the nef gene. Furthermore, expression of Vpr alone affects the progression of cells in the cell cycle. These results suggest that HIV-1 has evolved a viral gene to prevent chronic infection of T cells.

Journal ArticleDOI
TL;DR: This work has introduced site-directed changes into an infectious DNA clone of HIV-1 and show that integrase mutations can affect virus replication at a variety of steps, including mutations that altered virion morphology, levels of particle-associated integrase and reverse transcriptase, and viral DNA synthesis.
Abstract: The integration of a DNA copy of the human immunodeficiency virus type 1 (HIV-1) genome into a chromosome of an infected cell is a pivotal step in virus replication. Integration requires the activity of the virus-encoded integrase, which enters the cell as a component of the virion. Results of numerous mutagenesis studies have identified amino acid residues and protein domains of HIV-1 integrase critical for in vitro activity, but only a few of these mutants have been studied for their effects on HIV replication. We have introduced site-directed changes into an infectious DNA clone of HIV-1 and show that integrase mutations can affect virus replication at a variety of steps. We identified mutations that altered virion morphology, levels of particle-associated integrase and reverse transcriptase, and viral DNA synthesis. One replication-defective mutant virus which had normal morphology and protein composition displayed increased levels of circular viral DNA following infection of a T-cell line. This virus also had a significant titer in a CD4-positive indicator cell assay, which requires the viral Tat protein. Although unintegrated viral DNA can serve as a template for Tat expression in infected indicator cells, this level of expression is insufficient to support a spreading viral infection in CD4-positive lymphocytes.

Journal ArticleDOI
TL;DR: E2F1 can induce events leading to S phase but that the process is not normal and appears to result from the activation of a cell death pathway, which leads to massive cell death that is characteristic of apoptosis.
Abstract: Various experiments have demonstrated a role for the E2F transcription factor in the regulation of cell growth during the G0/G1/S phase transition. Indeed, overexpression of the E2F1 product, a component of the cellular E2F activity, induces DNA synthesis in quiescent fibroblasts. To provide an approach to a more detailed biochemical analysis of these events, we have made use of a recombinant adenovirus containing the E2F1 cDNA in order to efficiently express the E2F1 product in an entire population of cells. We demonstrate an induction of DNA synthesis when quiescent cells are infected with the E2F1 recombinant virus. However, we also find that the induction does not lead to a complete replication of the cellular genome, as revealed by flow cytometry. The incomplete nature of cellular DNA replication is due, at least in part, to the fact that E2F1 overexpression leads to massive cell death that is characteristic of apoptosis. This E2F1-mediated induction of apoptosis is largely dependent on endogenous wild-type p53 activity and can be subverted by introducing mutant forms of p53 into these cells or by overexpressing E2F1 in fibroblasts derived from p53-null mouse embryos. We conclude that E2F1 can induce events leading to S phase but that the process is not normal and appears to result from the activation of a cell death pathway.

Journal ArticleDOI
TL;DR: The mechanism of resistance of primary isolates to most neutralizing antibodies is complex, and it is suggested that it involves an inaccessibility of antibody binding sites in the context of the native glycoprotein complex on the virion.
Abstract: A panel of anti-gp120 human monoclonal antibodies (HuMAbs), CD4-IgG, and sera from people infected with human immunodeficiency virus type 1 (HIV-1) was tested for neutralization of nine primary HIV-1 isolates, one molecularly cloned primary strain (JR-CSF), and two strains (IIIB and MN) adapted for growth in transformed T-cell lines. All the viruses were grown in mitogen-stimulated peripheral blood mononuclear cells and were tested for their ability to infect these cells in the presence and absence of the reagents mentioned above. In general, the primary isolates were relatively resistant to neutralization by the MAbs tested, compared with the T-cell line-adapted strains. However, one HuMAb, IgG1b12, was able to neutralize most of the primary isolates at concentrations of < or = 1 microgram/ml. Usually, the inability of a HuMAb to neutralize a primary isolate was not due merely to the absence of the antibody epitope from the virus; the majority of the HuMAbs bound with high affinity to monomeric gp120 molecules derived from various strains but neutralized the viruses inefficiently. We infer therefore that the mechanism of resistance of primary isolates to most neutralizing antibodies is complex, and we suggest that it involves an inaccessibility of antibody binding sites in the context of the native glycoprotein complex on the virion. Such a mechanism would parallel that which was previously postulated for soluble CD4 resistance. We conclude that studies of HIV-1 neutralization that rely on strains adapted to growth in transformed T-cell lines yield the misleading impression that HIV-1 is readily neutralized. The more relevant primary HIV-1 isolates are relatively resistant to neutralization, although these isolates can be potently neutralized by a subset of human polyclonal or monoclonal antibodies.

Journal ArticleDOI
TL;DR: The aim was to study the phylogenetic relationships of all known papillomaviruses (PVs) and the possibility of establishing a supratype taxonomic classification based on this information, and constructed phylogenies based on partial L1 and E6 gene sequences and distinguished five major clades that are called supergroups.
Abstract: Our aim was to study the phylogenetic relationships of all known papillomaviruses (PVs) and the possibility of establishing a supratype taxonomic classification based on this information. Of the many detectably homologous segments present in PV genomes, a 291-bp segment of the L1 gene is notable because it is flanked by the MY09 and MY11 consensus primers and contains highly conserved amino acid residues which simplify sequence alignment. We determined the MY09-MY11 sequences of human PV type 20 (HPV-20), HPV-21, HPV-22, HPV-23, HPV-24, HPV-36, HPV-37, HPV-38, HPV-48, HPV-50, HPV-60, HPV-70, HPV-72, HPV-73, ovine (sheep) PV, bovine PV type 3 (BPV-3), BPV-5, and BPV-6 and created a database which now encompasses HPV-1 to HPV-70, HPV-72, HPV-73, seven yet untyped HPV genomes, and 15 animal PV types. Three additional animal PVs were analyzed on the basis of other sequence data. We constructed phylogenies based on partial L1 and E6 gene sequences and distinguished five major clades that we call supergroups. One of them unites 54 genital PV types, which can be further divided into eleven groups. The second supergroup has 24 types and unites most PVs that are typically found in epidermodysplasia verruciformis patients but also includes several types typical of other cutaneous lesions, like HPV-4. The third supergroup unites the six known ungulate fibropapillomaviruses, the fourth includes the cutaneous ungulate PVs BPV-3, BPV-4, and BPV-6, and the fifth includes HPV-1, HPV-41, HPV-63, the canine oral PV, and the cottontail rabbit PV. The chaffinch PV and two rodent PVs, Micromys minutus PV and Mastomys natalensis PV, are left ungrouped because of the relative isolation of each of their lineages. Within most supergroups, groups formed on the basis of cladistic principles unite phenotypically similar PV types. We discuss the basis of our classification, the concept of the PV type, speciation, PV-host evolution, and estimates of their rates of evolution.

Journal ArticleDOI
TL;DR: The Nef-mediated stimulation of proviral DNA synthesis is highly conserved and likely plays an important role in vivo, suggesting that Nef acts in producer cells to allow the generation of particles fully competent for completing steps that follow entry, leading to efficient reverse transcription of the HIV-1 genome.
Abstract: The Nef protein of human immunodeficiency virus type 1 (HIV-1) stimulates viral infectivity. The mechanism of this phenotype was investigated. Viruses containing disrupted nef genes were 4 to 40 times less infectious than wild-type HIV-1 in a single-round infection. The Nef-mediated stimulation HIV-1 infectivity was dependent on the association of Nef with the plasma membrane and could be observed when Nef was provided in trans in the virus producer but not target cells. The impaired infectiousness of nef-defective (delta Nef) virions was observed whether or not CD4 was present in either of these cells. Furthermore, it was independent of the mode of viral entry, since it was not rescued by pseudotyping Env- HIV-1 virions with the amphotropic murine leukemia virus envelope glycoproteins. As predicted from this result, wild-type and delta Nef virions entered cells with equal efficiencies. However, despite their normal content in viral genomic RNA and reverse transcriptase activity, delta Nef viruses were limited in their ability to perform reverse transcription once internalized in several cell types, including peripheral blood lymphocytes. Since Nef does not appear to be abundant in virions, these results suggest that Nef acts in producer cells to allow the generation of particles fully competent for completing steps that follow entry, leading to efficient reverse transcription of the HIV-1 genome. Using a trans complementation assay, we found that Nef proteins from a number of primary HIV-1 isolates as well as, to a milder degree, those from HIV-2ST and SIVMAC239 could enhance the infectivity of delta Nef HIV-1. This indicates that the Nef-mediated stimulation of proviral DNA synthesis is highly conserved and likely plays an important role in vivo.

Journal ArticleDOI
TL;DR: It is demonstrated that expression of vpr, either in the context of a provirus or from an independent genetic element, induces a discrete cell cycle arrest, with cells containing 4N DNA, indicating vpr's potential contribution to the cellular pathology associated with HIV-1 infection.
Abstract: Human immunodeficiency virus type 1 (HIV-1) vpr inhibits the replication of tumor cell lines and peripheral blood mononuclear cells. Here it is demonstrated that expression of vpr, either in the context of a provirus or from an independent genetic element, induces a discrete cell cycle arrest, with cells containing 4N DNA. Low cyclin B-associated kinase activity, as well as the status of p34cdc2 and cdc25C phosphorylation, indicates that the cascade of reactions which drives the cell into mitosis has not been initiated. The phosphatase inhibitor okadaic acid releases the block, suggesting that Vpr perturbs upstream regulatorsof the G2-M transition. These studies demonstrate that HIV-1 vpr has profound effects on the cellular factors which control entry into mitosis and indicate vpr9s potential contribution to the cellular pathology associated with HIV-1 infection.

Journal ArticleDOI
TL;DR: Using the lymphocytic choriomeningitis virus (LCMV) model, it is found that after resolution of the acute infection, a population of virus-specific plasma cells appears in the bone marrow and constitutes the major source of long-term antibody production.
Abstract: Antiviral antibody production is often sustained for long periods after resolution of an acute viral infection. Despite extensive documentation of this phenomenon, the mechanisms involved in maintaining long-term antibody production remain poorly defined. As a first step towards understanding the nature of long-term humoral immunity, we examined the anatomical location of antibody-producing cells during acute viral infection. Using the lymphocytic choriomeningitis virus (LCMV) model, we found that after resolution of the acute infection, when antiviral plasma cells in the spleen decline, a population of virus-specific plasma cells appears in the bone marrow and constitutes the major source of long-term antibody production. Following infection of adult mice, LCMV-specific antibody-secreting cells (ASC) peaked in the spleen at 8 days postinfection but were undetectable in the bone marrow at that time. The infection was essentially cleared by 15 days, and the ASC numbers in the spleen rapidly declined while an increasing population of LCMV-specific ASC began to appear in the bone marrow. Compared with the peak response at 8 days postinfection, time points from 30 days to more than 1 year later demonstrated greater-than-10-fold reductions in splenic ASC. In contrast, LCMV-specific plasma cell numbers in the bone marrow remained high and correlated with the high levels of antiviral serum antibody. The presence of LCMV-specific plasma cells in the bone marrow was not due to persistent infection at this site, since the virus was cleared from both the spleen and bone marrow with similar kinetics as determined by infectivity and PCR assays. The immunoglobulin G subclass profile of antibody-secreting cells derived from bone marrow and the spleen correlated with the immunoglobulin G subclass distribution of LCMV-specific antibody in the serum. Upon rechallenge with LCMV, the spleen exhibited a substantial increase in virus-specific plasma cell numbers during the early phase of the secondary response, followed by an equally sharp decline. Bone marrow ASC populations and LCMV-specific antibody levels in the serum did not change during the early phase of the reinfection, but both increased about two-fold by 15 days postchallenge. After both primary and secondary viral infections, LCMV-specific plasma cells were maintained in the bone marrow, showing that the bone marrow is a major site of long-term antibody production after acute viral infection. These results documenting long-term persistence of plasma cells in the bone marrow suggest a reexamination of our current notions regarding the half-life of plasma cells.

Journal ArticleDOI
TL;DR: It is suggested that neuraminidase is not required for influenza virus entry, replication, or assembly in cell culture or in mice.
Abstract: We have used a neuraminidase-deficient influenza virus, NWS-Mvi, which was selected by supplying bacterial neuraminidase in the medium (C. Liu and G. M. Air, Virology 194:403-407, 1993), to define the role of neuraminidase in influenza virus replication. Electron microscopy showed that virions of the NWS-Mvi mutant assembled normally and formed large aggregates associated with cell surfaces. The NWS-Mvi virus grown in the absence of neuraminidase was able to carry out a second round of replication in MDCK cells without added neuraminidase, indicating that the virus particles contained in these aggregates were infectious. Aggregates of virus were also found in cytoplasmic vacuoles. When virus-infected cells were incubated in the presence of ferritin, such aggregates were found to be labeled with ferritin, indicating that they are derived from uptake at the cell surface. When the neuraminidase-deficient virus was administered intranasally to C57BL/6 mice, low titers of virus were recovered from the lungs and major histocompatibility complex class I-restricted cytotoxic T cells were generated: evidence that cells were infected in vivo. In C57BL/6 nu/nu mice, the low level of virus persisted for at least 28 days but never increased. These results suggest that neuraminidase is not required for influenza virus entry, replication, or assembly in cell culture or in mice.

Journal ArticleDOI
TL;DR: Mice generated with a combined receptor defect showed an additive phenotype with respect to antiviral defense and exhibited an increased susceptibility to lymphocytic choriomeningitis virus and notably vaccinia virus infection.
Abstract: Alpha/beta interferon (IFN) and gamma IFN exert widely overlapping biological effects. Still, mice with individually inactivated alpha/beta or gamma receptors exhibit variably severely reduced resistance to infection and altered immune responses. To investigate to what extent the two IFN systems are functionally redundant, we generated mice with a combined receptor defect (AG129 mice). Like mice with individual mutations, AG129 mice had no apparent anomalies, confirming that in the mouse the IFN system is not essential for normal development. These mice showed an additive phenotype with respect to antiviral defense and exhibited an increased susceptibility to lymphocytic choriomeningitis virus (LCMV) and notably vaccinia virus infection. Because of unlimited replication and subsequent rapid exhaustion of cytotoxic T lymphocyte (CTL) precursors, these mice were unable to mount a CTL response to LCMV. CD8(+)-mediated immunopathology was absent in LCMV-infected mice, and virus persisted. Vaccinia virus replicated much faster in AG129 mice, and a 10(4)-fold lower dose of vaccinia virus was sufficient to prime these mice. With the normal priming dose of 10(6) PFU, cytopathic effects and overwhelming infection possibly causing partial exhaustion of CTL interfered with the anti-vaccinia virus response. Even though global antiviral immunoglobulin G (IgG) titers were within normal ranges, the IgG subclass distribution was heavily biased toward IgG1.

Journal ArticleDOI
TL;DR: The in vitro system described should facilitate the dissection of assembly pathways in retroviruses and suggest that RNA plays an important structural role in the virion and that it may initiate and organize the assembly process.
Abstract: The internal structural proteins of retroviruses are proteolytically processed from the Gag polyprotein, which alone is able to assemble into virus-like particles when expressed in cells. All Gag proteins contain domains corresponding to the three structural proteins MA, CA, and NC. We have expressed the CA and NC domains together as a unit in Escherichia coli, both for Rous sarcoma virus (RSV) and for human immunodeficiency virus type 1 (HIV-1). We also expressed a similar HIV-1 protein carrying the C-terminal p6 domain. RSV CA-NC, HIV-1 CA-NC, and HIV-1 CA-NC-p6 were purified in native form by classic methods. After adjustment of the pH and salt concentration, each of these proteins was found to assemble at a low level of efficiency into structures that resembled circular sheets and roughly spherical particles. The presence of RNA dramatically increased the efficiency of assembly, and in this case all three proteins formed hollow, cylindrical particles whose lengths were determined by the size of the RNA. The optimal pH at which assembly occurred was 5.5 for the RSV protein and 8.0 for the HIV-1 proteins. The treatment of the RSV CA-NC cylindrical particles with nonionic detergent, with ribonuclease, or with viral protease caused disassembly. These results suggest that RNA plays an important structural role in the virion and that it may initiate and organize the assembly process. The in vitro system described should facilitate the dissection of assembly pathways in retroviruses.

Journal ArticleDOI
TL;DR: It is demonstrated that TAK fulfills the genetic criteria established for a Tat cofactor, and an in vitro substrate of TAK, the carboxyl-terminal domain of the large subunit of RNA polymerase II is identified.
Abstract: Efficient replication of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) requires the virus transactivator proteins known as Tat. In order to understand the molecular mechanisms involved in Tat transactivation, it is essential to identify the cellular target(s) of the Tat activation domain. Using an in vitro kinase assay, we previously identified a cellular protein kinase activity, Tat-associated kinase (TAK), that specifically binds to the activation domains of Tat proteins. Here it is demonstrated that TAK fulfills the genetic criteria established for a Tat cofactor. TAK binds in vitro to the activation domains of the Tat proteins of HIV-1 and HIV-2 and the distantly related lentivirus equine infectious anemia virus but not to mutant Tat proteins that contain nonfunctional activation domains. In addition, it is shown that TAK is sensitive to dichloro-1-beta-D-ribofuranosylbenzimidazole, a nucleoside analog that inhibits a limited number of kinases and is known to inhibit Tat transactivation in vivo and in vitro. We have further identified an in vitro substrate of TAK, the carboxyl-terminal domain of the large subunit of RNA polymerase II. Phosphorylation of the carboxyl-terminal domain has been proposed to trigger the transition from initiation to active elongation and also to influence later stages during elongation. Taken together, these results imply that TAK is a very promising candidate for a cellular factor that mediates Tat transactivation.

Journal ArticleDOI
TL;DR: Results suggest the existence of a specific functional interaction between the HIV-1 matrix and the gp41 cytoplasmic tail, which is critical to the incorporation of HIV- 1 envelope glycoproteins into virus particles.
Abstract: Incorporation of envelope glycoproteins into a budding retrovirus is an essential step in the formation of an infectious virus particle. By using site-directed mutagenesis, we identified specific amino acid residues in the matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein that are critical to the incorporation of HIV-1 envelope glycoproteins into virus particles. Pseudotyping analyses were used to demonstrate that two heterologous envelope glycoproteins with short cytoplasmic tails (the envelope of the amphotropic murine leukemia virus and a naturally truncated HIV-2 envelope) are efficiently incorporated into HIV-1 particles bearing the matrix mutations. Furthermore, deletion of the cytoplasmic tail of HIV-1 transmembrane envelope glycoprotein gp41 from 150 to 7 or 47 residues reversed the incorporation block imposed by the matrix mutations. These results suggest the existence of a specific functional interaction between the HIV-1 matrix and the gp41 cytoplasmic tail.

Journal ArticleDOI
TL;DR: One or more of the replication-related lefs or the process of plasmid replication appears to induce cellular apoptosis, and the predicted sequence of lef-7 suggests that it is a homolog of herpesvirus single-stranded DNA-binding protein (UL29).
Abstract: A set of 18 plasmid subclones of the Autographa californica nuclear polyhedrosis virus genome supports expression from a late viral promoter in transient expression assays (J. W. Todd, A. L. Passarelli, and L. K. Miller, J. Virol. 69:968-974, 1995). Using this set of plasmids, we have assigned a role for each of the 18 genes required for optimal late gene expression with respect to its involvement at the levels of transcription, translation, and/or DNA replication. RNase protection analyses demonstrated that all of the known late expression factor genes (lefs) affected the steady-state level of reporter gene RNA. Thus, none of the lefs appeared to be specifically involved in translation. A subset of the lefs supported plasmid replication; ie-1, lef-1, lef-2, lef-3, p143, and p35 were essential for plasmid replication, while ie-n, lef-7, and dnapol had stimulatory effects. The predicted sequence of lef-7 suggests that it is a homolog of herpesvirus single-stranded DNA-binding protein (UL29). The role of p35 in plasmid replication appears to be suppression of apoptosis, because p35 could be functionally replaced in the replication assay by either Cp-iap or Op-iap, two heterologous baculovirus genes which suppress apoptosis by a mechanism which appears to differ from that of p35. Thus, one or more of the replication-related lefs or the process of plasmid replication appears to induce cellular apoptosis. Our results indicate that the remaining lefs, lefs 4 through 11, p47, and 39K (pp31), function either at the level of transcription or at that of mRNA stabilization.

Journal ArticleDOI
TL;DR: Chemical and RNase accessibility mapping, coupled with computerized sequence analysis, suggested a model for psi RNA structure comprising four independent stem-loops, which revealed that RNAs corresponding to three of these hypothetical stem-Loops can each function as a independent Gag binding site and that each is bound with approximately fourfold-lower apparent affinity than the full-length psi locus.
Abstract: The selective encapsidation of retroviral RNA requires sequences in the Gag protein, as well as a cis-acting RNA packaging signal (psi site) near the 5' end of the genomic transcript. Gag protein of human immunodeficiency virus type 1 (HIV-1) has recently been found to bind specifically to the HIV-1 psi element in vitro. Here we report studies aimed at mapping features within the genetically defined psi locus that are required for binding of HIV-1 Gag or of its processed nucleocapsid derivative. The full-length HIV-1 Gag (p55) and nucleocapsid (p15) sequences were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. In a gel shift assay containing excess competitor tRNA, affinity-purified GST-p15 and GST-p55 proteins bound to a 206-nucleotide psi RNA element spanning the major splice donor and gag start codons but did not bind to antisense psi transcripts. Quantitative filter-binding assays revealed that both GST-p55 and GST-p15 bound to this RNA sequence with identical affinities (apparent Kd congruent to 5 x 10(-8) M), indicating that all major determinants of psi binding affinity reside within the nucleocapsid portion of Gag. Chemical and RNase accessibility mapping, coupled with computerized sequence analysis, suggested a model for psi RNA structure comprising four independent stem-loops. Filter-binding studies revealed that RNAs corresponding to three of these hypothetical stem-loops can each function as a independent Gag binding site and that each is bound with approximately fourfold-lower apparent affinity than the full-length psi locus. Interaction of Gag with these regions is likely to play a major role in directing HIV-1 RNA encapsidation in vivo.