scispace - formally typeset
Search or ask a question

Showing papers in "Progress in Biophysics & Molecular Biology in 2003"


Journal ArticleDOI
TL;DR: Advances in the knowledge of the molecular structure of TJ support previous physiological models that exhibited TJ as dynamic structures that present distinct permeability and morphological characteristics in different tissues and in response to changing natural, pathological or experimental conditions.
Abstract: A fundamental function of epithelia and endothelia is to separate different compartments within the organism and to regulate the exchange of substances between them. The tight junction (TJ) constitutes the barrier both to the passage of ions and molecules through the paracellular pathway and to the movement of proteins and lipids between the apical and the basolateral domains of the plasma membrane. In recent years more than 40 different proteins have been discovered to be located at the TJs of epithelia, endothelia and myelinated cells. This unprecedented expansion of information has changed our view of TJs from merely a paracellular barrier to a complex structure involved in signaling cascades that control cell growth and differentiation. Both cortical and transmembrane proteins integrate TJs. Among the former are scaffolding proteins containing PDZ domains, tumor suppressors, transcription factors and proteins involved in vesicle transport. To date two components of the TJ filaments have been identified: occludin and claudin. The latter is a protein family with more than 20 members. Both occludin and claudins are integral proteins capable of interacting adhesively with complementary molecules on adjacent cells and of co-polymerizing laterally. These advancements in the knowledge of the molecular structure of TJ support previous physiological models that exhibited TJ as dynamic structures that present distinct permeability and morphological characteristics in different tissues and in response to changing natural, pathological or experimental conditions.

1,096 citations


Journal ArticleDOI
TL;DR: The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress to address some of the questions raised above.
Abstract: As blood flows, the vascular wall is constantly subjected to physical forces, which regulate important physiological blood vessel responses, as well as being implicated in the development of arterial wall pathologies. Changes in blood flow, thus generating altered hemodynamic forces are responsible for acute vessel tone regulation, the development of blood vessel structure during embryogenesis and early growth, as well as chronic remodeling and generation of adult blood vessels. The complex interaction of biomechanical forces, and more specifically shear stress, derived by the flow of blood and the vascular endothelium raise many yet to be answered questions:How are mechanical forces transduced by endothelial cells into a biological response, and is there a "shear stress receptor"?Are "mechanical receptors" and the final signaling pathways they evoke similar to other stimulus-response transduction systems?How do vascular endothelial cells differ in their response to physiological or pathological shear stresses?Can shear stress receptors or shear stress responsive genes serve as novel targets for the design of diagnostic and therapeutic modalities for cardiovascular pathologies?The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress and to address some of the questions raised above.

579 citations


Journal ArticleDOI
TL;DR: The physiological and pathophysiological roles of K(ATP) channels learned from genetic manipulation of mice and naturally occurring mutations in humans are focused on.
Abstract: ATP-sensitive potassium (KATP) channels are present in many tissues, including pancreatic islet cells, heart, skeletal muscle, vascular smooth muscle, and brain, in which they couple the cell metabolic state to its membrane potential, playing a crucial role in various cellular functions. The KATP channel is a hetero-octamer comprising two subunits: the pore-forming subunit Kir6.x (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptor SUR (SUR1 or SUR2). Kir6.x belongs to the inward rectifier K+ channel family; SUR belongs to the ATP-binding cassette protein superfamily. Heterologous expression of differing combinations of Kir6.1 or Kir6.2 and SUR1 or SUR2 variant (SUR2A or SUR2B) reconstitute different types of KATP channels with distinct electrophysiological properties and nucleotide and pharmacological sensitivities corresponding to the various KATP channels in native tissues. The physiological and pathophysiological roles of KATP channels have been studied primarily using KATP channel blockers and K+ channel openers, but there is no direct evidence on the role of the KATP channels in many important cellular responses. In addition to the analyses of naturally occurring mutations of the genes in humans, determination of the phenotypes of mice generated by genetic manipulation has been successful in clarifying the function of various gene products. Recently, various genetically engineered mice, including mice lacking KATP channels (knockout mice) and mice expressing various mutant KATP channels (transgenic mice), have been generated. In this review, we focus on the physiological and pathophysiological roles of KATP channels learned from genetic manipulation of mice and naturally occurring mutations in humans.

485 citations


Journal ArticleDOI
TL;DR: This review summarizes some general aspects of G-protein-mediated signalling and focusses on recent data especially from studies in mutant mice which have elucidated some of the cellular and biological functions of heterotrimeric G-prtoteins.
Abstract: The G-protein-mediated signalling system has evolved as one of the most widely used transmembrane signalling mechanisms in mammalian organisms. All mammalian cells express G-protein-coupled receptors as well as several types of heterotrimeric G-proteins and effectors. G-protein-mediated signalling is involved in many physiological and pathological processes. This review summarizes some general aspects of G-protein-mediated signalling and focusses on recent data especially from studies in mutant mice which have elucidated some of the cellular and biological functions of heterotrimeric G-prtoteins.

297 citations


Journal ArticleDOI
TL;DR: The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes.
Abstract: The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, intergrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. (C) 2003 Elsevier Science Ltd. All rights reserved.

154 citations


Journal ArticleDOI
TL;DR: Prevention of electroanatomical remodeling by blockade of pathways activated by chronic atrial stretch therefore provides a promising strategy for future treatment of AF.
Abstract: Numerous clinical investigations as well as recent experimental studies have demonstrated that atrial fibrillation (AF) is a progressive arrhythmia. With time paroxysmal AF becomes persistent and the success rate of cardioversion of persistent AF declines. Electrical remodeling (shortening of atrial refractoriness) develops within the first days of AF and contributes to the increase in stability of the arrhythmia. However, 'domestication of AF' must also depend on other mechanisms since the persistence of AF continues to increase after electrical remodeling has been completed. During the first days of AF in the goat, electrical and contractile remodeling (loss of atrial contractility) followed exactly the same time course suggesting that they are due to the same underlying mechanism. Contractile remodeling not only enhances the risk of atrial thrombus formation, it also enhances atrial dilatation by increasing the compliance of the fibrillating atrium. In goats with chronic AV-block atrial dilatation increased the duration of artificially induced AF-episodes but did not change atrial refractoriness or the AF cycle length. When AF was maintained a couple of days in these animals, a shortening of the atrial refractory period did occur. However, the AF cycle length did not decrease. Long lasting episodes of AF with a long AF cycle length and a wide excitable gap suggest that in this model AF is mainly promoted by conduction disturbances. Chronic atrial stretch induces activation of numerous signaling pathways leading to cellular hypertrophy, fibroblast proliferation and tissue fibrosis. The resulting electroanatomical substrate in dilated atria is characterized by increased non-uniform anisotropy and macroscopic slowing of conduction, promoting reentrant circuits in the atria. Prevention of electroanatomical remodeling by blockade of pathways activated by chronic atrial stretch therefore provides a promising strategy for future treatment of AF.

143 citations


Journal ArticleDOI
TL;DR: I(Cl,swell) plays a role in arrhythmogenesis, myocardial injury, preconditioning, and apoptosis of myocytes, and potentially is a novel therapeutic target.
Abstract: Characteristics and functions of the cardiac swelling-activated Cl current ( I Cl,swell ) are considered in physiologic and pathophysiologic settings. I Cl,swell is broadly distributed throughout the heart and is stimulated not only by osmotic and hydrostatic increases in cell volume, but also by agents that alter membrane tension and direct mechanical stretch. The current is outwardly rectifying, reverses between the plateau and resting potentials ( E m ), and is time-independent over the physiologic voltage range. Consequently, I Cl,swell shortens action potential duration, depolarizes E m , and acts to decrease cell volume. Because it is activated by stimuli that also activate cation stretch-activated channels, I Cl,swell should be considered as a potential effector of mechanoelectrical feedback. I Cl,swell is activated in ischemic and non-ischemic dilated cardiomyopathies and perhaps during ischemia and reperfusion. I Cl,swell plays a role in arrhythmogenesis, myocardial injury, preconditioning, and apoptosis of myocytes. As a result, I Cl,swell potentially is a novel therapeutic target.

138 citations


Journal ArticleDOI
TL;DR: It is shown that laminar shear stress causes a transient increase in monocyte chemotactic protein-1 (MCP-1) expression, which involves the Ras-MAP kinase signaling pathway, which provides a molecular basis for the explanation of the preferential localization of atherosclerotic lesions at regions of disturbed flow, such as the arterial branch points.
Abstract: Mechanical forces such as shear stress can modulate gene and protein expressions and hence cellular functions by activating membrane sensors and intracellular signaling. Using cultured endothelial cells, we have shown that laminar shear stress causes a transient increase in monocyte chemotactic protein-1 (MCP-1) expression, which involves the Ras-MAP kinase signaling pathway. We have demonstrated that integrins and the vascular endothelial growth factor receptor Flk-1 can sense shear stress, with integrins being upstream to Flk-1. Other possible membrane components involved in the sensing of shear stress include G-protein coupled receptors, intercellular junction proteins, membrane glycocalyx, and the lipid bilayer. Mechano-transduction involves the participation of a multitude of sensors, signaling molecules, and genes. Microarray analysis has demonstrated that shear stress can upregulate and downregulate different genes. Sustained shear stress downregulates atherogenic genes (e.g., MCP-1 and the genes that facilitate lipid accumulation) and upregulates growth-arrest genes. In contrast, disturbed flow observed at branch points and simulated in step-flow channels causes sustained activation of MCP-1 and the genes facilitating cell turnover and lipid accumulation. These findings provide a molecular basis for the explanation of the preferential localization of atherosclerotic lesions at regions of disturbed flow, such as the arterial branch points. The combination of mechanics and biology (from molecules–cells to organs–systems) can help to elucidate the physiological processes of mechano-chemical transduction and improving the methods of the management of important clinical conditions such as coronary artery disease.

130 citations


Journal ArticleDOI
TL;DR: Electronprobe microanalysis indicated that stretch increased total sodium [Na] in cell compartments such as mitochondria, nuclear envelope and nucleus and indicated that channels may be activated not only by axial but also by shear stress, and, that stretch can activate channels outside the deformed sarcomeres via second messenger.
Abstract: Mechano-electrical feedback was studied in the single ventricular myocytes. A small fraction (approximately 10%) of the cell surface could be stretched or compressed by a glass stylus. Stretch depolarised, shortened the action potential and induced extra systoles. Stretch activated non-selective cation currents () showed a linear voltage dependence, a reversal potential of 0 mV, a pure cation selectivity, and were blocked by 8 μM Gd3+ or 30 μM streptomycin. Stretch reduced Ca2+ and K+ () currents. Local compression of broadwise attached cells activated but not . Cytochalasin D or colchicin, thought to disrupt the cytoskeleton, suppressed the mechanosensitivity of and . During stretch, the cytosolic sodium concentration increased with spatial heterogeneities, local hotspots with [Na+]c>24 mM appeared close to surface membrane and t-tubules (pseudoratiometric imaging using Sodium Green fluorescence). Electronprobe microanalysis confirmed this result and indicated that stretch increased total sodium [Na] in cell compartments such as mitochondria, nuclear envelope and nucleus. Our results obtained by local stretch differ from those obtained by end-to-end stretch (literature). We speculate that channels may be activated not only by axial but also by shear stress, and, that stretch can activate channels outside the deformed sarcomeres via second messenger.

107 citations


Journal ArticleDOI
TL;DR: A combination of computer modeling methods to capture the complexity and details, and useful abstractions revealed by these models, is necessary to achieve both rigorous description as well as human understanding.
Abstract: Signaling networks are complex both in terms of the chemical and biophysical events that underlie them, and in the sheer number of interactions. Computer models are powerful tools to deal with both aspects of complexity, but their utility goes beyond simply replicating signaling events in silicon. Their great advantage is as a tool to understanding. The completeness of the description demanded by computer models highlights gaps in knowledge. The quantitative description in models facilitates a mapping between different kinds of analysis methods for complex systems. Systems analysis methods can highlight stable states of signaling networks and describe the transitions between them. Modeling also reveals functional similarities between signaling network properties and other well-understood systems such as electronic devices and neural networks. These suggest various metaphors as a tool to understanding. Based on such descriptions, it is possible to regard signaling networks as systems that decode complex inputs in time, space and chemistry into combinatorial output patterns of signaling activity. This would provide a natural interface to the combinatorial input patterns required by genetic circuits. Thus, a combination of computer modeling methods to capture the complexity and details, and useful abstractions revealed by these models, is necessary to achieve both rigorous description as well as human understanding.

104 citations


Journal ArticleDOI
TL;DR: Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress.
Abstract: According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

Journal ArticleDOI
TL;DR: This volume of Progress in Biophysics and Molecular Biology incorporates clinical and basic science results, and it is fitting that its publication coincides with a special session on cardiac MEF at the 2003 meeting of NASPE.
Abstract: Mechanical effects on heart rhythm have been known to the clinical community for well over a century, and documented cases include both arrhythmogenic and pro-rhythmic consequences of mechanical stimulation The intracardiac pathway that leads from changes in the cardiac mechanical environment to altered electrical activity is referred to as mechano-electric feedback (MEF) Fundamental research into the mechanisms underlying cardiac MEF is 'engineering-intensive', and much of the current insight would have been impossible without the introduction of novel techniques for the study of isolated cardiac cells Clinical and basic research into MEF have developed over different time scales, often uninformed of each other, and utilizing disparate concepts and terminology Bridging the gap between the two domains is not straightforward, as physicians and scientists tend to publish in different journals and attend different meetings There is, however, a growing interest in 're-uniting' the clinic and basic MEF research, as witnessed by an increasing number of dedicated journal issues and international meetings, including events hosted by major European and American professional organisations such as the ESC and NASPE Last year alone saw an international workshop on Cardiac MEF & Arrhythmias at Oxford, as well as dedicated sessions at NASPE's 23rd annual meeting in San Diego, CardioStim 2002 in Nice, and the UK Physiological Society meeting in Leeds This volume of Progress in Biophysics and Molecular Biology incorporates clinical and basic science results, and it is fitting that its publication coincides with a special session on cardiac MEF at the 2003 meeting of NASPE

Journal ArticleDOI
TL;DR: Myocardial stretch also modifies electrical activity and the opening of stretch-activated channels (SACs) is often used to explain this effect, but the myocardium has many ionic currents that are regulated by [Ca(2+)](i) and in this review this can influence electrical activity via the modulation of these Ca( 2+)-dependent currents.
Abstract: Stretch of the myocardium influences the shape and amplitude of the intracellular Ca(2+)([Ca(2+)](i)) transient Under isometric conditions stretch immediately increases myofilament Ca(2+) sensitivity, increasing force production and abbreviating the time course of the [Ca(2+)](i) transient (the rapid response) Conversely, muscle shortening can prolong the Ca(2+) transient by decreasing myofilament Ca(2+) sensitivity During the cardiac cycle, increased ventricular dilation may increase myofilament Ca(2+) sensitivity during diastolic filling and the isovolumic phase of systole, but enhance the decrease in myofilament Ca(2+) sensitivity during the systolic shortening of the ejection phase If stretch is maintained there is a gradual increase in the amplitude of the Ca(2+) transient and force production, which takes several minutes to develop fully (the slow response) The rapid and slow responses have been reported in whole hearts and single myocytes Here we review stretch-induced changes in [Ca(2+)](i) and the underlying mechanisms Myocardial stretch also modifies electrical activity and the opening of stretch-activated channels (SACs) is often used to explain this effect However, the myocardium has many ionic currents that are regulated by [Ca(2+)](i) and in this review we discuss how stretch-induced changes in [Ca(2+)](i) can influence electrical activity via the modulation of these Ca(2+)-dependent currents Our recent work in single ventricular myocytes has shown that axial stretch prolongs the action potential This effect is sensitive to either SAC blockade by streptomycin or the buffering of [Ca(2+)](i) with BAPTA, suggesting that both SACs and [Ca(2+)](i) are important for the full effects of axial stretch on electrical activity to develop

Journal ArticleDOI
TL;DR: D duplex models mimic (patho-)physiological mechano-electric interactions in heterogeneous myocardium at the multicellular level, and in an environment that allows one to control mechanical, electrical and pharmacological parameters.
Abstract: The heart is structurally and functionally a highly non-homogenous organ, yet its main function as a pump can only be achieved by the co-ordinated contraction of millions of ventricular cells This apparent contradiction gives rise to the hypothesis that 'well-organised' inhomogeneity may be a pre-requisite for normal cardiac function Here, we present a set of novel experimental and theoretical tools for the study of this concept Heterogeneity, in its most condensed form, can be simulated using two individually controlled, mechanically interacting elements (duplex) We have developed and characterised three different types of duplexes: (i) biological duplex, consisting of two individually perfused biological samples (like thin papillary muscles or a trabeculae), (ii) virtual duplex, made-up of two interacting mathematical models of cardiac muscle, and (iii) hybrid duplex, containing a biological sample that interacts in real-time with a virtual muscle In all three duplex types, in-series or in-parallel mechanical interaction of elements can be studied during externally isotonic, externally isometric, and auxotonic modes of contraction and relaxation Duplex models, therefore, mimic (patho-)physiological mechano-electric interactions in heterogeneous myocardium at the multicellular level, and in an environment that allows one to control mechanical, electrical and pharmacological parameters Results obtained using the duplex method show that: (i) contractile elements in heterogeneous myocardium are not 'independent' generators of tension/shortening, as their ino- and lusitropic characteristics change dynamically during mechanical interaction-potentially matching microscopic contractility to macroscopic demand, (ii) mechanical heterogeneity contributes differently to action potential duration (APD) changes, depending on whether mechanical coupling of elements is in-parallel or in-series, which may play a role in mechanical tuning of distant tissue regions, (iii) electro-mechanical activity of mechanically interacting contractile elements is affected by their activation sequence, which may optimise myocardial performance by smoothing intrinsic differences in APD In conclusion, we present a novel set of tools for the experimental and theoretical investigation of cardiac mechano-electric interactions in healthy and/or diseased heterogeneous myocardium, which allows for the testing of previously inaccessible concepts

Journal ArticleDOI
TL;DR: A brief summary of the author's personal choice of contributions that she considers have fostered the understanding of the role of mechano-electric feedback in arrhythmogenesis is provided.
Abstract: The mechanical state of the heart feeds back to modify cardiac rate and rhythm. Mechanical stretch of myocardial tissue causes immediate and chronic responses that lead to the common end point of arrhythmia. This review provides a brief summary of the author's personal choice of contributions that she considers have fostered our understanding of the role of mechano-electric feedback in arrhythmogenesis. Acute mechanical stretch reversibly depolarises the cell membrane and shortens the action potential duration. These electrophysiological changes are related to the activation of mechano-sensitive ion channels. Several different ion channels are involved in the sensing of stretch, among them K(+)-selective, Cl(-)-selective, non-selective, and ATP-sensitive K(+) channels. Sodium and Ca(2+) entering the cells via non-selective ion channels are thought to contribute to the genesis of stretch-induced arrhythmia. Mechano-sensitive channels have been cloned from non-vertebrate and vertebrate species. Chronic stress on the heart activates gene expression in cardiomyocytes and non-myocytes. The signal transduction involves atrial natriuretic peptides and growth factors that initiate remodelling processes leading to hypertrophy which in turn may contribute to the electrical instability of the heart by increasing the responsiveness of mechano-sensitive channels. Selective block of these channels could provide some new form of treatment of mechanically induced arrhythmias, although at present there are no drugs available with sufficient selectivity. Detailed understanding of how mechanical strain on myocardial cells is translated into channel activation will allow to identify new targets for putative antiarrhythmic drugs.

Journal ArticleDOI
TL;DR: These contributions have not only allowed the identification of the apolipoprotein domains that determine substrate binding specificity and/or affinity but also the plausible molecular mechanism(s) involved.
Abstract: Exchangeable apolipoproteins have been the subject of intense biomedical investigation for decades. However, only in recent years the elucidation of the three-dimensional structure reported for several members of the apolipoprotein family has provided insights into their functions at a molecular level for the first time. Moreover, the role of exchangeable apolipoproteins in several cellular events distinct from lipid metabolism has recently been described. This review summarizes these contributions, which have not only allowed the identification of the apolipoprotein domains that determine substrate binding specificity and/or affinity but also the plausible molecular mechanism(s) involved.

Journal ArticleDOI
TL;DR: Electrophysiological recordings of single atrial fibroblasts indicate that mechanical compression of the cells may activate a non-selective cation conductance leading to depolarisation of the membrane potential, which may contribute to the increased risk of post-infarct arrhythmia.
Abstract: Cardiac arrhythmia is a serious clinical condition, which is frequently associated with abnormalities of mechanical loading and changes in wall tension of the heart. Recent novel findings suggest that fibroblasts may function as mechano-electric transducers in healthy and diseased hearts. Cardiac fibroblasts are electrically non-excitable cells that respond to spontaneous contractions of the myocardium with rhythmical changes of their resting membrane potential. This phenomenon is referred to as mechanically induced potential (MIP) and has been implicated in the mechano-electric feedback mechanism of the heart. Mechano-electric feedback is thought to adjust the frequency of spontaneous myocardial contractions to changes in wall tension, which may result from variable filling pressure. Electrophysiological recordings of single atrial fibroblasts indicate that mechanical compression of the cells may activate a non-selective cation conductance leading to depolarisation of the membrane potential. Reduced amplitudes of MIPs due to pharmacological disruption of F-actin and tubulin suggest a role for the cytoskeleton in the mechano-electric signal transduction process. Enhanced sensitivity of the membrane potential of the fibroblasts to mechanical stretch after myocardial infarction correlates with depression of heart rates. It is assumed that altered electrical function of cardiac fibroblasts may contribute to the increased risk of post-infarct arrhythmia.

Journal ArticleDOI
TL;DR: The role of myocardial NO production in regulating cardiac function appears to be more complex and controversial as mentioned in this paper, and some studies have shown that non-isoform-specific inhibition of NO synthesis with l -arginine analogues has no effect on basal contraction in LV myocytes.
Abstract: In the heart, nitric oxide (NO) is constitutively produced by the vascular and endocardial endothelium, the cardiomyocytes and the autonomic nerves. Whereas stimulation of NO release from the vascular endothelium has consistently been shown to quicken the onset of left ventricular (LV) relaxation and cause a small reduction in peak contraction, the role of myocardial NO production in regulating cardiac function appears to be more complex and controversial. Some studies have shown that non-isoform-specific inhibition of NO synthesis with l -arginine analogues has no effect on basal contraction in LV myocytes. However, others have demonstrated that stimulation of myocardial NO production can offset the increase in contraction in response to a rise in intracellular Ca2+. Cardiac NO production is also activated by stretch and under these conditions NO has been shown to facilitate the Frank–Starling response and to contribute to the increase in intracellular Ca2+ transients that mediates the slow increase in contraction in response to stretch (i.e., the Anrep effect). These findings suggest that NO can mediate diverse and even contrasting actions within the myocardium, a notion that is difficult to reconcile with the early description of NO as a highly reactive and diffusible molecule possessing minimal specificity in its interactions. The purpose of this short review is to revisit some of the ‘controversial’ aspects of NO-mediated regulation of myocardial function, taking into account our current understanding of how mammalian cells may target and regulate the synthesis of NO in such a way that NO can serve diverse physiological functions.

Journal ArticleDOI
TL;DR: Recent findings showing that acute atrial dilatation facilitates atrial fibrillation (AF) and that two stretch-activated channel (SAC) blockers are able to suppress stretch-facilitated AF strongly support a role of MEF and SACs in promoting sustained arrhythmias and point to a new class of antiarrhythmic drugs.
Abstract: Mechanoelectrical feedback (MEF) has become firmly established as a mechanism in which mechanical forces experienced by myocardial tissue or cell membranes convey alterations in electrophysiologic characteristics of such tissue. Observations to date mainly concern mechanically induced changes in action potential duration, resting and active potential amplitude, enhanced pacemaker frequency, or afterdepolarizations. While some of these changes (i.e. after depolarizations) may give rise to premature beats, a role of MEF in explaining sustained ventricular tachyarrhythmias has so far been elusive. Here, we review recent findings showing that acute atrial dilatation facilitates atrial fibrillation (AF) and that two stretch-activated channel (SAC) blockers (gadolinium and GsMTx-4) are able to suppress stretch-facilitated AF. These findings strongly support a role of MEF and SACs in promoting sustained arrhythmias and point to a new class of antiarrhythmic drugs.

Journal ArticleDOI
TL;DR: Sarcomere length typically varies by 10% above and below the unloaded length; although under the boundary conditions imposed in the current model the midwall circumferentially oriented sarcomere lengths increased by up to 20% at end diastole.
Abstract: Measurements of the geometry and fibrous-sheet structure of the left and right ventricles of the pig heart are fitted with a finite element model. Mechanical changes during the heart cycle are computed by solving the equations of motion under specified ventricular boundary conditions and using experimentally defined constitutive laws for the active and passive material properties of myocardial tissue. The resulting patterns of deformation, such as axial torsion and changes in wall thickness and base-apex length, are consistent with experimental observations. The model can therefore be used to predict sarcomere length changes and other strain patterns throughout the myocardium and throughout the cardiac cycle. Here we present sarcomere length changes at a limited number of material points within the wall. Sarcomere length typically varies by 10% above and below the unloaded length; although under the boundary conditions imposed in the current model the midwall circumferentially oriented sarcomere lengths increased by up to 20% at end diastole. We provide web-access details for a downloadable software program designed to provide more extensive information on mechanical deformation, such as the principal strains and muscle fibre cross-sectional area changes during the cardiac cycle.

Journal ArticleDOI
TL;DR: Experimental studies in isolated preparations clearly show that atrial refractory period and action potential duration at early levels of repolarization shorten by acute atrial dilatation.
Abstract: Atrial fibrillation frequently occurs under conditions associated with atrial dilatation suggesting a role of mechano-electric feedback in atrial arrhythmogenesis. Although atrial arrhythmias may be due both to abnormal focal activity and reentrant mechanisms, the majority of sustained atrial arrhythmias have been ascribed to reentrant activity. Atrial stretch may contribute to focal arrhythmias by inducing afterdepolarizations and to reentrant arrhythmias by increasing the atrial surface, by shortening the refractory period and/or slowing the conduction velocity and by increasing their spatial dispersion. Experimental and clinical studies have demonstrated that changes in mechanical loading conditions may modulate the electrophysiological properties of the atria. These studies have, for the most part, involved the effects of acute stretch on atrial refractoriness. While studies in humans and intact animals yield divergent results due to the variety of loading conditions and neurohumoral influences, experimental studies in isolated preparations clearly show that atrial refractory period and action potential duration at early levels of repolarization shorten by acute atrial dilatation. Both experimental and human studies have shown that acute atrial stretch is arrhythmogenic and may induce triggered premature beats and atrial fibrillation.

Journal ArticleDOI
TL;DR: A brief review of electrophysiological differences in action potential duration of myocardial cells isolated from different depths of the ventricular wall is provided and experimental evidence derived from patients undergoing cardiac surgery is included.
Abstract: Myocardial cells isolated from different depths of the ventricular wall show substantial differences in action potential duration. Whether these electrophysiological differences are present in vivo when the cells are well coupled is a subject of ongoing controversy. This article provides a brief review and includes experimental evidence derived from patients undergoing cardiac surgery.

Journal ArticleDOI
TL;DR: A computational approach based on the finite difference and finite element methods is used for analysing the spatio-temporal behaviour of [H(+)] when it is locally perturbed, providing a framework for future analyses of the physiological consequences of pH(i) non-uniformity.
Abstract: Intracellular pH, an important modulator of cell function, is regulated by plasmalemmal proteins that transport H(+), or its equivalent, into or out of the cell. The pH(i) is also stabilised by high-capacity, intrinsic buffering on cytoplasmic proteins, oligopeptides and other solutes, and by the extrinsic CO(2)/HCO(3)(-) (carbonic) buffer. As mobility of these buffers is lower than for the H(+) ion, they restrict proton diffusion. In this paper we use computational approaches, based on the finite difference and finite element methods (FDM and FEM, respectively), for analysing the spatio-temporal behaviour of [H(+)] when it is locally perturbed. We analyse experimental data obtained for various cell-types (cardiac myocytes, duodenal enterocytes, molluscan neurons) where pH(i) has been imaged confocally using intracellular pH-sensitive dyes. We design mathematical algorithms to generate solutions for two-dimensional diffusion that fit data in terms of an apparent intracellular H(+) diffusion coefficient, D(H)(app). The models are used to explore how the spatial distribution of [H(+)](i) is affected by membrane H(+)-equivalent transport and by cell geometry. We then develop a mechanistic model, describing spatio-temporal changes of [H(+)](i) in a cardiac ventricular myocyte in terms of H(+)-shuttling on mobile buffers and H(+)-anchoring on fixed buffers. We also discuss how modelling may include the effects of extrinsic carbonic-buffering. Overall, our computational approach provides a framework for future analyses of the physiological consequences of pH(i) non-uniformity.

Journal ArticleDOI
Mark S. Link1
TL;DR: In an experimental model of commotio cordis utilizing anesthetized juvenile swine, ventricular fibrillation can be produced by a 30 mph baseball strike if the strike occurred during the vulnerable period of repolarization, on the upslope of the T-wave.
Abstract: Sudden death due to nonpenetrating chest wall impact in the absence of injury to the ribs, sternum and heart is known as commotio cordis. Although once thought rare, an increasing number of these events have been reported. Indeed, a significant percentage of deaths on the athletic field are due to chest wall impact. Commotio cordis is most frequently observed in young individuals (age 4-18 years), but may also occur in adults. Sudden death is instantaneous or preceded by several seconds of lightheadedness after the chest wall blow. Victims are most often found in ventricular fibrillation, and successful resuscitation is more difficult than expected given the young age, excellent health of the victims, and the absence of structural heart disease. Autopsy examination is notable for the lack of any significant cardiac or thoracic abnormalities. In an experimental model of commotio cordis utilizing anesthetized juvenile swine, ventricular fibrillation can be produced by a 30 mph baseball strike if the strike occurred during the vulnerable period of repolarization, on the upslope of the T-wave. Energy of the impact object was also found to be a critical variable with 40 mph baseballs more likely to cause ventricular fibrillation than velocities less or greater than 40 mph. In addition, more rigid impact objects and blows directly over the center of the chest were more likely to cause ventricular fibrillation. Peak left ventricular pressure generated by the chest wall blow correlated with the risk of ventricular fibrillation. Activation of the K(+)(ATP) channel is a likely cause of the ventricular fibrillation produced by chest wall blows. Successful resuscitation is attainable with early defibrillation.

Journal ArticleDOI
TL;DR: First electron-microscopic insight into changes in cardiomyocyte cell structure in situ during acute ventricular volume manipulation is presented, confirming the anticipated ventricularVolume-related changes inCardiomyocytes sarcomere length.
Abstract: Effects of mechanical stimulation on cardiac electrical activity, gene expression, protein synthesis, and tissue remodelling have received increasing attention in recent years, as reviewed in this issue of PBMB. Little is known, though, about how changes in ventricular filling affect the cell configuration of cardiomyocytes in the ventricular wall. Here, we present first electron-microscopic insight into changes in cardiomyocyte cell structure in situ during acute ventricular volume manipulation. Apart from confirming the anticipated ventricular volume-related changes in cardiomyocyte sarcomere length, there is evidence of (i) unfolding of ‘slack’ membrane, primarily from sarcolemmal invaginations near the Z-lines, and (ii) stretch-induced incorporation of sub-membrane caveolae into the surface membrane. The functional relevance of these changes in cardiomyocyte membrane configuration—other than to cater for the length-dependent modulation of the cell surface to cell volume ratio—remains to be elucidated.

Journal ArticleDOI
TL;DR: This work explored the steady state and dynamic responses of single channels in adult rat atrial cells using the patch clamp with a pressure clamp and only observed K(+)-selective SACs, probably of the 2P domain family.
Abstract: The effect of mechanical stress on the heart’s electrical activity has been termed mechanoelectric feedback. The response to stretch depends upon the magnitude and the waveform of the stimulus, and upon the timing relative to the cardiac cycle. Stretch-activated ion channels (SACs) have been regarded as the most likely candidates for serving as the primary transducers of mechanical stress. We explored the steady state and dynamic responses of single channels in adult rat atrial cells using the patch clamp with a pressure clamp. Surprisingly, we only observed K + -selective SACs, probably of the 2P domain family. The channels were weakly outward rectifying with flickery bursts. In cell attached mode, the mean conductance was 74714 and 65716 pS for +60 and � 60 mV, respectively (140 mM [K + ]out, 2 mM [Mg 2+ ]out and 0 mM [Ca 2+ ]out). The latency of the response to pressure steps was 50–100 ms and the time to peak B400 ms. About half of the channels in cell-attached patches showed adaptation/inactivation where channel activity declined to a plateau of 20–30% of peak in B1 s. The time dependent behavior of these SACs is generally consistent with whole-cell currents observed in chick and rat ventricular cells, although the net current was outward rather than inward. r 2003 Published by Elsevier Science Ltd.

Journal ArticleDOI
TL;DR: The biophysical and molecular features of coupling between the sarcolemmal and sarcoplasmic reticulum Ca(2+) channels in smooth and cardiac muscle are compared and loose coupling refers to the coupling process in smooth muscle in which gating of ryanodine receptors is non-obligate.
Abstract: This article reviews the key experiments demonstrating calcium-induced calcium release (CICR) in smooth muscle and contrasts the biophysical and molecular features of coupling between the sarcolemmal (L-type Ca 2+ channel) and sarcoplasmic reticulum (ryanodine receptor) Ca 2+ channels in smooth and cardiac muscle. Loose coupling refers to the coupling process in smooth muscle in which gating of ryanodine receptors is non-obligate and may occur with a variable delay following opening of the sarcolemmal Ca 2+ channels. These features have been observed in the earliest studies of CICR in smooth muscle and are in marked contrast to cardiac CICR, where a close coupling between T-tubular and SR membranes results in tight coupling between the gating events. The relationship between this “loose coupling” and distinct subcellular release sites within smooth muscle cells, termed frequent discharge sites, is discussed.

Journal ArticleDOI
TL;DR: Current knowledge regarding aquaporin function and dysfunction in water-losing and water-retaining states is reviewed.
Abstract: Following the discovery of the aquaporin-1 water channel in 1991, molecular techniques have been developed to examine the roles of renal aquaporins-1, -2, -3, and -4 in disorders of water balance. This article reviews current knowledge regarding aquaporin function and dysfunction in water-losing and water-retaining states.

Journal ArticleDOI
TL;DR: Experiments will be described, indicating that the ventricular premature beats of the 1B phase, which may induce ventricular fibrillation, are caused by stretch of the border between ischaemic and normal myocardium.
Abstract: Mechanical stimuli delivered to the precordium can, if strong enough and timed at the beginning of the T-wave, induce ventricular premature beats or runs of ventricular tachycardia and even fibrillation. On the other hand, there are reports that a properly timed "chest thump" can terminate ventricular tachycardia, or can act as pacemaker stimuli during an episode of asystole. It is likely that in these cases mechanical energy is translated to an electrical stimulus. There are more subtle ways in which mechanical stimuli, mediated by stretch, can exert electrophysiological effects, and the most common name to describe these effects is mechanoelectrical feedback. Most studies have concentrated on acute stretch or dilatation, while the effects of chronic stretch, which may clinically be more important, are difficult to evaluate since they are accompanied by other factors, such as hypertrophy, heart failure, fibrosis, neurohumeral disturbances, and electrolyte abnormalities, all of which have arrhythmogenic effects. There are a number of ion channels that are activated following stretch. Stretch during diastole usually leads to a depolarization, resembling a delayed afterdepolarization, which may reach threshold and initiate a ventricular premature beat. Stretch during systole usually shortens the action potential, but action potential prolongation, resulting in early afterdepolarizations has been described as well. The arrhythmias during acute myocardial ischaemia occur in two phases: the 1A phase between 2 and 10 min following coronary artery occlusion, and the 1B phase between 18 and 30 min. Experiments will be described, indicating that the ventricular premature beats of the 1B phase, which may induce ventricular fibrillation, are caused by stretch of the border between ischaemic and normal myocardium. Briefly, 1B arrhythmias are much less frequent in the isolated perfused heart than in the heart in situ, but in working, ejecting isolated hearts, the number of 1B arrhythmias is similar to those in the in situ heart. The ventricular premature beats have a focal origin at the border, and they occur more often after a pause-induced potentiated contraction.

Journal ArticleDOI
TL;DR: It is suggested that calcineurin and calmodulin-dependent kinase II are activated by calcium influx and subsequent calcium-induced calcium release, and play an important role in stretch-induced gene expression during the development of cardiac hypertrophy.
Abstract: In cardiomyocytes, mechanical stress induces a variety of hypertrophic responses including an increase in protein synthesis and a reprogramming of gene expression. Recently, the calcium signaling has been reported to play an important role in the development of cardiac hypertrophy. In this article, we report on the role of the calcium signaling in stretch-induced gene expression in cardiomyocytes. Stretching of cultured cardiomyocytes up-regulates the expression of brain natriuretic peptide (BNP). Intracellular calcium-elevating agents such as the calcium ionophore A23187, the calcium channel agonist BayK8644 and the sarcoplasmic reticulum calcium-ATPase inhibitor thapsigargin up-regulate BNP gene expression. Conversely, stretch-induced BNP gene expression is suppressed by EGTA, stretch-activated ion channel inhibitors, voltage-dependent calcium channel antagonists, and long-time exposure to thapsigargin. Furthermore, stretch increases the activity of calcium-dependent effectors such as calcineurin and calmodulin-dependent kinase II, and inhibitors of calcineurin and calmodulin-dependent kinase II significantly attenuated stretch-induced hypertrophy and BNP expression. These results suggest that calcineurin and calmodulin-dependent kinase II are activated by calcium influx and subsequent calcium-induced calcium release, and play an important role in stretch-induced gene expression during the development of cardiac hypertrophy.