scispace - formally typeset
Search or ask a question

Showing papers in "Science China-earth Sciences in 2018"


Journal ArticleDOI
TL;DR: The performances of positioning, navigation and timing (PNT) of the future BeiDou global system (BDS-3) were evaluated based on the signal quality of the present demonstration satellite system.
Abstract: The first two Medium Earth Orbit (MEO) satellites of the third generation of BeiDou satellite navigation System (BDS-3) were successfully launched on November 5, 2017. This historical launch starts the new era of the global navigation satellite system of BeiDou. Before the first two satellites of BDS-3, a demonstration system for BDS-3 with five satellites, including two Inclined Geosynchronous Orbit satellites (IGSO) and three MEO satellites, was established between 2015 and 2016 for testing the new payloads, new designed signals and new techniques. In the demonstration system, the new S frequency signal and satellite hydrogen clock as well as inter-satellite link (ISL) based on Ka-band signals with time-division multiple addresses (TDMA) were tested. This paper mainly analyzes the performances of the demonstration system, including the signal-to-noise ratios, pseudorange errors and the multipath errors of the civilian signals of BDS-3. The qualities of signals in space, time synchronization and timing precision were tested as well. Most of the performances were compared with those of the regional BeiDou satellite navigation system (BDS-2). At last, the performances of positioning, navigation and timing (PNT) of the future BeiDou global system (BDS-3) were evaluated based on the signal quality of the present demonstration satellite system.

184 citations


Journal ArticleDOI
TL;DR: In this paper, the authors made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the North China Craton (NCC) and classified them into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma.
Abstract: The North China Craton (NCC) has been thinned from >200 km to in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative e Nd( t ) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive e Nd( t ) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.

179 citations


Journal ArticleDOI
TL;DR: A review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia can be found in this paper, where the record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Middle and Early Cretaceous, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent.
Abstract: This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks, bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing’an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the Paleo-Pacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex, indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the Paleo-Pacific slab at this time.

169 citations


Journal ArticleDOI
TL;DR: The Tan-Lu Fault Zone (TLFZ) as mentioned in this paper is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics, and can be used for indication to the subduction history.
Abstract: The NE- to NNE-striking Tan-Lu Fault Zone (TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate, and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis, and indicates initiation of the Paleo-Pacific (Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.

144 citations


Journal ArticleDOI
TL;DR: Wenhao et al. as discussed by the authors conducted a review by synthesizing major achievements regarding episodic deformation features, sedimentary and magmatic records of the Yanshan orogeny in China and clarified the episodic tectono-magmatism and its geodynamic origins.
Abstract: The Yanshan movement/orogeny has been proposed for 90 years, which is of special significance in the history of geological research in China. This study conducted a review by synthesizing major achievements regarding episodic deformation features, sedimentary and magmatic records of the Yanshan orogeny in China, and clarified the episodic tectono-magmatism and its geodynamic origins. The tectonic implications of the Yanshan orogeny are discussed in the context of global plate tectonics and supercontinent reconstruction. Lines of evidence from structural, sedimentary and magmatic data suggest that the Yanshan orogeny represents a regional-scale tectonic event that affected the entire China continent in late Mesozoic period. Numerous age and structural constraints consistently indicate that the Yanshan orogeny was initiated in the Jurassic (at ∼170±5 Ma). and was characterized by alternating stages of crustal shortening at ∼170–136 Ma, crustal extension at ∼135–90 Ma, and weak shortening at ∼80 Ma. The 170–136 Ma crustal shortening was reflected in the generation of two regional stratigraphic unconformities (the Tiaojishan and Zhangjiakou unconformities), which were initially named the A and B episodes of “the Yanshan Orogeny” by Mr. Wong Wenhao in 1928. Geodynamically, the Yanshan orogeny in East Asia was associated with nearly coeval oceanic subduction and continental convergence in the Paleo-Pacific, Neo-Tethys, and Mongol-Okhotsk tectonic domains. As a consequence, three giant accretionary-collisional tectonic systems were formed along the continental margins of East Asia, i.e., the Mongol-Okhotsk, Bangonghu-Nujiang, and SE China subduction- and collision-related accretionary systems. The Yanshan orogeny induced widespread crustal-scale folding and thrusting, tectonic reactivation of long-lived zones of crustal weakness, and extensive magmatism and mineralization in intraplate regions. Based on the time principle of supercontinent assembly and break-up, we propose that the mid-Late Jurassic multi-plate convergence in East Asia might represent the initiation of the assembly of the Amasia supercontinent, and the Yanshan orogeny might be the first “stirrings” that is a prerequisite for the birth of the Amasia supercontinent.

98 citations


Journal ArticleDOI
TL;DR: Genomics and related areas of investigation will reveal more about the molecular components and mechanisms involved in Vibrio-mediated biotransformation and remineralization processes, particularly on marine organic carbon cycling especially in marginal seas.
Abstract: The genus Vibrio , belonging to Gammaproteobacteria of the phylum Proteobacteria , is a genetically and ecologically diverse group of heterotrophic bacteria, that are ubiquitous in marine environments, especially in coastal areas. In particular, vibrios dominate, i.e. up to 10% of the readily culturable marine bacteria in these habitats. The distribution of Vibrio spp. is shaped by various environmental parameters, notably temperature, salinity and dissolved organic carbon. Vibrio spp. may utilize a wide range of organic carbon compounds, including chitin (this may be metabolized by most Vibrio spp.), alginic acid and agar. Many Vibrio spp. have very short replication times (as short as ~ 10 min), which could facilitate them developing into high biomass content albeit for relatively short durations. Although Vibrio spp. usually comprise a minor portion (typically ~1% of the total bacterioplankton in coastal waters) of the total microbial population, they have been shown to proliferate explosively in response to various nutrient pulses, e.g., organic nutrients from algae blooms and iron from Saharan dust. Thus, Vibrio spp. may exert large impacts on marine organic carbon cycling especially in marginal seas. Genomics and related areas of investigation will reveal more about the molecular components and mechanisms involved in Vibrio -mediated biotransformation and remineralization processes.

85 citations


Journal ArticleDOI
Yi-Gang Xu1, Hongyan Li1, Lu-Bing Hong1, Liang Ma1, Qiang Ma1, Ming-Dao Sun1 
TL;DR: The role of the big mantle wedge (BMW) in the evolution of the east Asian continental margin has attracted lots of attention in recent years as discussed by the authors, with attempts to put forward a general model accounting for the generation of intraplate magma in a BMW system.
Abstract: The roles of subduction of the Pacific plate and the big mantle wedge (BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regarding the composition and chemical heterogeneity of the BMW beneath eastern Asia and geochemistry of Cenozoic basalts in the region, with attempts to put forward a general model accounting for the generation of intraplate magma in a BMW system. Some key points of this review are summarized in the following. (1) Cenozoic basalts from eastern China are interpreted as a mixture of high-Si melts and low-Si melts. Wherever they are from, northeast, north or south China, Cenozoic basalts share a common low-Si basalt endmember, which is characterized by high alkali, Fe 2 O 3 T and TiO2 contents, HIMU-like trace element composition and relatively low 206Pb/204Pb compared to classic HIMU basalts. Their Nd-Hf isotopic compositions resemble that of Pacific Mantle domain and their source is composed of carbonated eclogites and peridotites. The high-Si basalt endmember is characterized by low alkali, Fe 2 O 3 T and TiO2 contents, Indian Mantle-type Pb-Nd-Hf isotopic compositions, and a predominant garnet pyroxenitic source. High-Si basalts show isotopic provinciality, with those from North China and South China displaying EM1-type and EM2-type components, respectively, while basalts from Northeast China containing both EM1- and EM2-type components. (2) The source of Cenozoic basalts from eastern China contains abundant recycled materials, including oceanic crust and lithospheric mantle components as well as carbonate sediments and water. According to their spatial distribution and deep seismic tomography, it is inferred that the recycled components are mostly from stagnant slabs in the mantle transition zone, whereas EM1 and EM2 components are from the shallow mantle. (3) Comparison of solidi of garnet pyroxenite, carbonated eclogite and peridotite with regional geotherm constrains the initial melting depth of high-Si and low-Si basalts at and ~300 km, respectively. It is suggested that the BMW under eastern Asia is vertically heterogeneous, with the upper part containing EM1 and EM2 components and isotopically resembling the Indian mantle domain, whereas the lower part containing components derived from the Pacific mantle domain. Contents of H2O and CO2 decrease gradually from bottom to top of the BMW. (4) Melting of the BMW to generate Cenozoic intraplate basalts is triggered by decarbonization and dehydration of the slabs stagnated in the mantle transition zone.

80 citations


Journal ArticleDOI
TL;DR: Based on monthly data of 124 meteorological stations from 1961 to 2015, the Standardized Precipitation Evapotranspiration Index (SPEI) was used to explore the temporal and spatial patterns of drought in the YRB as mentioned in this paper.
Abstract: Drought is one of the severe natural disasters to impact human society and occurs widely and frequently in China, causing considerable damage to the living environment of humans. The Yellow River basin (YRB) of China shows great vulnerability to drought in the major basins; thus, drought monitoring in the YRB is particularly important. Based on monthly data of 124 meteorological stations from 1961 to 2015, the Standardized Precipitation Evapotranspiration Index (SPEI) was used to explore the temporal and spatial patterns of drought in the YRB. The periods and trends of drought were identified by Extreme-point Symmetric Mode Decomposition (ESMD), and the research stages were determined by Bernaola-Galvan Segmentation Algorithm (BGSA). The annual and seasonal variation, frequency and intensity of drought were studied in the YRB. The results indicated that (1) for the past 55 years, the drought in the YRB has increased significantly with a tendency rate of −0.148 (10 a)−1, in which the area Lanzhou to Hekou was the most vulnerable affected (−0.214 (10 a)−1); (2) the drought periods (2.9, 5, 10.2 and 18.3 years) and stages (1961–1996, 1997–2002 and 2003–2015) were characterized and detected by ESMD and BGSA; (3) the sequence of drought frequency was summer, spring, autumn and winter with mean values of 71.0%, 47.2%, 10.2% and 6.9%, respectively; and (4) the sequence of drought intensity was summer, spring, winter and autumn with mean values of 0.93, 0.40, 0.05 and 0.04, respectively.

70 citations


Journal ArticleDOI
TL;DR: In this paper, the authors consider the Mesozoic North China Craton (NCC) and show that the mantle replacement and coupled basin-mountain response within the NCC due to subduction and retreating of the Paleo-Pacific plate is a comprehensive consequence of geological processes proceeding surrounding and within craton, involving both deep lithospheric upwelling and shallow mantle and shallow deformation.
Abstract: The North China Craton (NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods: (1) Late Paleozoic to Early Jurassic (~170 Ma); (2) Middle Jurassic to Early Cretaceous (160–140 Ma); (3) Early Cretaceous to Cenozoic (140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period, the subduction and closure of the Paleo-Asian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression (Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range province by the Mesozoic magmatic plutons and NE-SW trending faults. With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle (SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weak zones (i.e., cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted (~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by (1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling. Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment; (2) then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton, or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.

62 citations


Journal ArticleDOI
TL;DR: In this article, the authors used monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research.
Abstract: A long-term perspective on the spatial variation of the northern boundary of the East Asian summer monsoon (EASM) and the related physical mechanisms is important for understanding past climate change in Asia and for predicting future changes. However, most of the meteorological definitions of the EASM northern boundary do not correspond well to the actual geographical environment, which is problematic for paleoclimatic research. Here, we use monthly CMAP and GPCP precipitation data to define a new EASM northern boundary index by using the concept of the global monsoon, which is readily applicable to paleoclimatic research. The results show that the distribution of the 2 mm day−1 precipitation isoline (i.e., 300 mm precipitation) has a good relationship with the spatial distribution of modern land cover types, the transitional climate zone and the potential natural vegetation types, in China. The locations of the precipitation isolines also correspond well to the locations of major shifts in wind direction. These results suggest that the 2 mm day−1 isoline has a clear physical significance since the climatic, ecological, and geographical boundary can be used as the northern boundary index of the EASM (which we call the climatological northern boundary index). The index depicts the northeast-southwest orientation of the climatological (1981−2010) EASM northern boundary, along the eastern part of the Qilian Mountains-southern foothills of the Helan Mountains-Daqing Mountains-western margin of the Greater Khingan Range, from west to east across Northwest and Northeast China. The interannual change of the EASM northern boundary from 1980 to 2015 covers the central part of Gansu, the northern part of Ningxia, the eastern part of Inner Mongolia and the northeastern region in China. It can extend northward to the border between China and Mongolia and retreat southward to Shangdong-central Henan. There is a 200−700 km fluctuation range of the interannual EASM northern boundaries around the locations of the climatological northern boundary. In addition, the spatial variation of the interannual EASM northern boundaries gradually increases from west to east, whereas the trend of north-south fluctuations maintains a roughly consistent location in different regions.

58 citations


Journal ArticleDOI
TL;DR: Wastewater-based epidemiology is a new approach to monitor drug abuse as discussed by the authors, which involves collecting wastewater, analysis of residues of drugs or its metabolites in wastewater, and back-calculation of drug consumption by taking into account wastewater flow, stability of drug target residues in wastewater and excretion rates of drugs/metabolites.
Abstract: Wastewater-based epidemiology is a new approach to monitor drug abuse. It involves collecting wastewater, analysis of residues of drugs or its metabolites in wastewater, and back-calculation of drug consumption by taking into account wastewater flow, stability of drug target residues in wastewater, and excretion rates of drugs/metabolites. Wastewater-based epidemiology has the advantages of being inexpensive and yielding more consistent and near real-time results. It has the great potential to supplement the existing drug monitoring methods. It can be used to build large-scale (regional, national, or even continental) monitoring networks that would yield spatial patterns and temporal trends in drug abuse. This paper described in detail the principle and procedures of this wastewater-based approach. Application of this approach across the globe was also reviewed. The uncertainties involved in the approach and knowledge gaps were identified. Finally, necessity, benefits, and feasibility to set up nation or province-wide monitoring networks based on wastewater analysis in China were discussed.

Journal ArticleDOI
TL;DR: Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants (including salt marsh, mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor as discussed by the authors.
Abstract: Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants (including salt marsh, mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China’s commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes, mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.

Journal ArticleDOI
TL;DR: Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom (180-120 km in depth) of cratonic lithosphere in North China, the carbonated melts should have 25-18 wt% CO2 contents, with lower SiO2 and Al2O3 contents, similar to those of nephelinites and basanites, and have higher e Nd values.
Abstract: High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions ( δ 26Mg = –0.60‰ to –0.30‰) and relatively low 87Sr/86Sr ratios (0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300−360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom (180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower SiO2 and Al2O3 contents, and higher CaO/Al2O3 values, similar to those of nephelinites and basanites, and have higher e Nd values (2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-SiO2 alkali basalts with lower e Nd values (to −2). As the lithospheric thinning goes on, initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ 26Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to 25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135−115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about 70 km in the eastern part of North China craton.

Journal ArticleDOI
TL;DR: In this article, the role of Kuroshio intrusion, the monsoons, topography, and the buoyancy effect of the Pearl River plume in the shelf and slope current system of the NSCS is summarized.
Abstract: Influenced by the seasonally reversed monsoons, water exchange through straits, and topography, the shelf and slope circulation in the northern South China Sea (NSCS) is complex and changeable. The typical current system in the NSCS consists of the slope current, South China Sea warm current (SCSWC), coastal current, and associated upwelling (in summer) and downwelling (in winter). This paper reviews recent advances in the study of NSCS shelf and slope circulation since the 1990s, and summarizes the roles of Kuroshio intrusion, the monsoons, topography, and the buoyancy effect of the Pearl River plume in the shelf and slope current system of the NSCS. We also point out some potential scientific issues that require further study, such as the dynamic connection between the internal basin and shelf areas of the NSCS, the persistence of the SCSWC in winter, the temporo-spatial characteristics of downwelling during winter in the NSCS, and its material and energy transport.

Journal ArticleDOI
TL;DR: In this article, the authors present the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton, and conclude that carbonate melts derived from the subduction-modified asthenospheric (Sulu orogen) mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate meta-metasomatisms.
Abstract: The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios (15–70) and 87Sr/86Sr ratios (0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios (5–18) and 87Sr/86Sr ratios (0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios (5–9) and 87Sr/86Sr ratios (0.702–0.704). Deep (garnet-bearing) and shallow (spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts, only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.

Journal ArticleDOI
TL;DR: In this paper, the influence of general circulation on the climate system over the arid and semi-arid region of Central and East Asia (CEA) is systematically reviewed.
Abstract: The arid and semi-arid (ASA) region of Asia occupies a large area in the middle latitudes of the Northern Hemisphere, of which the main body is the ASA region of Central and East Asia (CEA). In this region, the climate is fragile and the environment is sensitive. The eastern part of the ASA region of CEA is located in the marginal zone of the East Asian monsoon and is jointly influenced by westerly circulation and the monsoon system, while in the western part of the ASA of CEA, the climate is mainly controlled by westerly circulation. To understand and predict the climate over this region, it is necessary to investigate the influence of general circulation on the climate system over the ASA region of CEA. In this paper, recent progress in understanding the relationship between the general circulation and climate change over the ASA region is systematically reviewed. Previous studies have demonstrated that atmospheric circulation represents a significant factor in climate change over the ASA region of CEA. In the years with a strong East Asian summer monsoon, the water vapor flux increases and precipitation is abundant in the southeastern part of Northwest China. The opposite situation occurs in years when the East Asian summer monsoon is weak. With the weakening of the East Asian summer monsoon, the climate tends to dry over the semi-arid region located in the monsoon marginal zone. Recently, owing to the strengthening of the South Asian monsoon, more water vapor has been transported to the ASA region of Asia. The Plateau summer monsoon intensity and the precipitation in summer exhibit a significant positive correlation in Central Asia but a negative correlation in North China and Mongolia. A significant positive correlation also exists between the westerly index and the temperature over the arid region of CEA. The change in the westerly circulation may be the main factor affecting precipitation over the arid region of Central Asia.

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper suggested that the lower and middle parts of the Yanchang Formation should be of the Ladinian and the bottom possibly belongs to the late Anisian of the Middle Triassic, mainly based on new fossils found in it and high resolution radiometric dating results.
Abstract: The Yanchang Formation is extensively developed in the Ordos Basin and its surrounding regions. As one of the best terrestrial Triassic sequences in China and the major oil-gas bearing formations in the Ordos Basin, its age determination and stratigraphic assignment are important in geological survey and oil-gas exploration. It had been attributed to the Late Triassic and regarded as the typical representative of the Upper Triassic in northern China for a long time, although some scholars had already proposed that the lower part of this formation should be of the Middle Triassic age in the mid-late 20th century. In this paper, we suggest that the lower and middle parts of the Yanchang Formation should be of the Ladinian and the bottom possibly belongs to the late Anisian of the Middle Triassic, mainly based on new fossils found in it and high resolution radiometric dating results. The main source rocks, namely the oil shales and mudstones of the Chang-7, are of the Ladinian Age. The upper part of the Yanchang Formation, namely the Chang-6 and the above parts, belongs to the Late Triassic. The uppermost of the Triassic is missed in most parts of the Ordos Basin. The Middle-Upper Triassic Series boundary lies in the Yanchang Formation, equivalent to the boundary between Chang-7 and Chang-6. The Ladinian is an important palaeoenvironmental turning point in the Ordos Basin. Palaeoenvironmental changes in the basin are coincidence with that of the Sichuan Basin and the main tectonic movement of the Qinling Mountains. It indicates that tectonic activities of the Qinling Mountains are related to the big palaeoenvironmental changes in both the Ordos and Sichuan Basins, which are caused by the same structural dynamic system during the Ladinian.

Journal ArticleDOI
TL;DR: In this article, the authors systematically analyzed the literature data on the carbon pools and fluxes of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea.
Abstract: The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semi-closed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea, including different interfaces (land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems (mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO2 sources, releasing about 0.22 and 13.86– 33.60 Tg C yr−1 into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92 –23.30 Tg C yr−1 of atmospheric CO2, respectively. Overall, if only the CO2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO2, with a net release of 6.01 –9.33 Tg C yr−1 , mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon(DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr−1 , respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr−1 , significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr−1 , respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr−1 , respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36 –1.75 Tg C yr−1 , with a dissolved organic carbon (DOC) output from seagrass beds of up to 0.59 Tg C yr−1 . Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr−1 and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr−1 , respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72 –104.56 Tg C yr−1 . The DOC efflux from the East China Sea to the adjacent oceans is 15.00 –35.00 Tg C yr−1 . The DOC efflux from the South China Sea is 31.39 Tg C yr−1 . Although the marginal China Seas seem to be a source of atmospheric CO2 based on the CO2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export, and microbial carbon pump (DOC conversion and output) indicate that the China Seas represent an important carbon storage area.

Journal ArticleDOI
TL;DR: The authors investigated over 2000 sites of pre-history and Shang and Zhou Dynasties, with 655 of which being Neolithic ages, by using DEM and GIS methods, and found that the spatial and temporal distribution of Neolithic sites has largely been controlled by landscape evolution (particularly changes in coastal line), which ultimately governed by sea level changes.
Abstract: The East China coastal plain is one of the most important Neolithic culture areas in China, where rich archaeological sites including those producing the earliest domesticated rice are observed. It is also a place where landscape has experienced dramatic evolution during the Holocene when both sea level and climate changed, such that it is an ideal place for studying human-environment interaction. This study investigated over 2000 sites of pre-history and Shang and Zhou Dynasties, with 655 of which being Neolithic ages, by using DEM and GIS methods. The results suggest that the spatial and temporal distribution of Neolithic sites has largely been controlled by landscape evolution (particularly changes in coastal line), which ultimately governed by sea level changes. During early Holocene, Neolithic sites sparsely distributed in the intermountain basins of east Zhejiang Province, far from the influence of ocean. Over the period of 9–7 ka, the coastal plain (including the shelf) was largely submerged, only the feet of low hills to the south and southwest of the study area, and islands protruding the estuary, cradled limited number of settlements with characteristic “maritime components”. At about 7 ka, sea level rise decelerated prominently, while sediments supply in the drainage remained high value, the combination of which led to land formation and propagation. Vast space during this period facilitated the growth of settlements in both size and number. In the mean time, however, the coastal plain was vulnerable to extreme environmental events such as storms and flooding owning to its geomorphic nature, which exerted great influence on the rise and fall of Neolithic culture.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors applied both tectonic and sedimentary methods on the fold-and-thrust belt and intramontane basins in the Zhangjiakou area, which is located at the intersection between the western Yanshan and northern Taihangshan.
Abstract: The timing of the “Yanshanian Movement” and the tectonic setting that controlled the Yanshan fold-and-thrust belt during Jurassic time in China are still matters of controversy. Sediments that filled the intramontane basins in the Yanshan belt perfectly record the history of “Yanshanian Movement” and the tectonic background of these basins. Recognizing syn-tectonic sedimentation, clarifying its relationship with structures, and accurately defining strata ages to build up a correct chronostratigraphic framework are the key points to further reveal the timing and kinematics of tectonic deformation in the Yanshan belt from the Jurassic to the Early Cretaceous. This paper applies both tectonic and sedimentary methods on the fold-and-thrust belt and intramontane basins in the Zhangjiakou area, which is located at the intersection between the western Yanshan and northern Taihangshan. Our work suggests that the pre-defined “Jurassic strata” should be re-dated and sub-divided into three strata units: a Late Triassic to Early Jurassic unit, a Middle Jurassic unit, and a Late Jurassic to early Early Cretaceous unit. Under the control of growth fold-and-thrust structures, five types of growth strata developed in different growth structures: fold-belt foredeep type, thrust-belt foredeep type, fault-propagation fold-thrust structure type, fault-bend fold-thrust structure type, and fault-bend fold-thrust plus fault-propagation fold composite type. The reconstructed “source-to-sink” systems of Late Triassic to Early Jurassic, Middle Jurassic and Late Jurassic to early Early Cretaceous times, which are composed of a fold-and-thrust belt and flexure basins, imply that the “Yanshanian Movement” in our study area started in theMiddle Jurassic. During Middle Jurassic to early Early Cretaceous times, there have been at least three stages of fold-thrust events that developed “Laramide-type” basement-involved fold-thrust structures and small-scale intramontane broken “axial basins”. The westward migration of a “pair” of basement-involved fold-thrust belt and flexure basins might have been controlled by flat subduction of the western Paleo-Pacific slab from the Jurassic to the Early Cretaceous.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper examined the spatiotemporal evolution of China's flash flood disasters (FFDs) since 1949 and explored driving factors affecting the spatial distribution of historical FFDs.
Abstract: This study examines the spatiotemporal evolution of China’s flash flood disasters (FFDs) since 1949 and explores driving factors affecting the spatial distribution of historical FFDs. Records of more than 60000 FFDs are examined, and the centroid comparison method is used to reveal the spatiotemporal evolution of FFDs from 1951 to 2015. In particular, the geographical locations of the centroids, degrees of aggregation, and associated movement tendencies are examined to conduct a preliminary analysis of correlations between rainfall, population, and the spatiotemporal evolution of FFDs. Subsequently, using relevant data from 2000 to 2015, three factors relating to FFDs in natural watershed units include namely rainfall, human activity, and the environment of the Earth’s surface. The geographical detector method is then employed to explore the effect of these driving factors on the spatial distribution of FFDs. Analysis results show that displacement of the spatial distribution of FFDs since 1949 is correlated with variations in rainfall and population distribution. In addition, it is determined that the distribution of FFDs occurring between 2000 and 2015 have regional differentiation characteristics. However, the effect of rainfall on the distribution of FFDs is more significant than that of human activity or the environment of the Earth’s surface, but interactions occur between these latter two factors in disaster-formative environments. Furthermore, results also show that the driving factors of FFDs have significant spatiotemporal heterogeneity. In China, regions at high risk of FFDs include the Sichuan-Chongqing ecological zone, the South China ecological zone, the Yunnan-Guizhou Plateau, and the middle and lower reaches of the Yangtze River, while regions with a low risk of FFDs include the Northwest China arid zone, Qinghai-Tibet Plateau, Inner Mongolian Plateau, and the Northeast China ecological zone. These findings support further studies investigating disaster-formative environments, facilitate FFD risk zoning, and provide a scientific basis for plans to effectively prevent and control FFDs.

Journal ArticleDOI
Weidong Zhai1
TL;DR: In this paper, the authors investigated seasonal variations in dissolved oxygen and carbonate system parameters of the Yellow Sea on the western continental margin of the North Pacific Ocean and found that the cold water mass accumulated respiration-induced CO2 in subsurface and bottom waters in summer and autumn, leading to acidified seawaters with critical carbonate saturation states of aragonite (Ωarag) of less than 1.5.
Abstract: The Yellow Sea on the western continental margin of the North Pacific Ocean is of major ecological and economic importance. Four field surveys were conducted during May and November 2012, August 2015, and January 2016, investigating seasonal variations in dissolved oxygen and carbonate system parameters of this marginal sea. Results showed that the Yellow Sea cold water mass accumulated respiration-induced CO2 in subsurface and bottom waters in summer and autumn, leading to acidified seawaters with critical carbonate saturation states of aragonite (Ωarag) of less than 1.5. These seriously acidified seawaters occupied one third of surveyed areas in summer and autumn, likely affecting local calcified organisms and benthic communities. In a future scenario for the 2050s, in which the atmospheric CO2 mole fraction increases by 100 μmol mol−1, half of the Yellow Sea benthos would be seasonally covered by acidified seawater having a critical Ωarag of less than 1.5. The corresponding bottom-water pHT would be around 7.85 in summer, and 7.80 in autumn. Of the China seas, the Yellow Sea cold water mass represents one of the ecosystems most vulnerable to ocean acidification.

Journal ArticleDOI
TL;DR: In this paper, the efficiency and threshold of rainfall replenishment to soil water were determined under natural grassland, wheat, artificial grass land, sea buckthorn shrubland and Chinese pine forestland based on consecutive measurements.
Abstract: As one critical source of water for maintaining ecosystems in arid and semi-arid regions, rainfall replenishment to soil water can determine vegetation growth and ecosystem functions. However, the limited rainfall resources were often not used effectively in the semi-arid loess hilly areas due to random temporal and spatial distribution of rainfall and specific vegetation features. Thus, it is highly significant to determine the threshold and efficiency of rainfall replenishment to soil water under different vegetation types. The threshold and efficiency can offer scientific evidence for rehabilitating vegetation and improving efficiency of using rainfall resources. In this study, the efficiency and threshold of rainfall replenishment to soil water were determined under natural grassland, wheat, artificial grassland, sea buckthorn shrubland and Chinese pine forestland based on consecutive measurements. The results indicated that the lag-time, rate, efficiency of rainfall replenishment to soil water were closely related to vegetation type, with significant differences existing among different vegetation types. The lag-time for natural grassland in the soil horizon of 20 cm was the shortest one (26.4 h), followed by wheat (27.8 h), sea buckthorn (41.8 h), artificial grassland (50.0 h) and Chinese pine (81.8 h) .The value of replenishment rate, followed the order of wheat (0.40 mm h–1) > natural grassland (0.30 mm h–1) > sea buckthorn (0.17 mm h–1) > artificial grassland (0.14 mm h–1) > Chinese pine (0.09 mm h–1). As for the efficiency of rainfall replenishment to soil water, natural grassland was the most efficient one (35.1%), followed by wheat (29.2%), sea buckthorn (16.8%), artificial grassland (11.5%), Chinese pine (4.2%). At last, it was found that wheat had the lowest threshold (6.8 mm) of rainfall replenishment to soil water, which was followed by natural grassland (10.5 mm), sea buckthorn (20.5 mm), artificial grassland (22.6 mm) and Chinese pine (26.4 mm). These results implied that soil water in natural grassland was sensitive to rainfall and easily to be replenished, while soil water in Chinese pine was harder to be replenished by rainfall compared to other vegetation types.

Journal ArticleDOI
TL;DR: In this paper, a systematic chronological study of the Xiashu loess is conducted to answer this question, and the results of magnetostratigraphy and optically stimulated luminescence (OSL) dating is estimated to be approximately 0.9 Ma.
Abstract: The Xiashu loess is a typical Quaternary eolian deposit in southern China and represents an important terrestrial paleoclimate archive in this low-latitude monsoon region. However, the chronological framework of Xiashu loess deposition has yet to be established. Determining the timing of the onset of Xiashu loess deposition will allow researchers to better understand late Quaternary aridification across the Asian continent, the evolution of the East Asian monsoon and regional environmental changes in subtropical regions. Therefore, in this study, a systematic chronological study of the Xiashu loess is conducted to answer this question. For the first time, magnetostratigraphic classification reveals that the Matuyama/Brunhes (M/B) reversal is present in the Xiashu loess at two sites in Jiangsu Province, the Qingshan profile at Yizheng and the Dagang core in Zhenjiang. Based on the results of magnetostratigraphy and optically stimulated luminescence (OSL) dating, the age of the lower boundary of the Xiashu loess is estimated to be approximately 0.9 Ma. Consequently, this Xiashu loess deposit is the oldest reported to date and is comparable in age to the red soil deposit in Xuancheng, Anhui Province. The onset of Xiashu loess deposition by 0.9 Ma represents the further expansion of arid range in Asia in the late Quaternary in response to significant aridification and winter monsoon strengthening in this subtropical region. We suggest that these climate changes were primarily driven by global cooling and an increase in high-latitude ice volume in the Northern Hemisphere and that the initiation of Xiashu loess accumulation was a regional response of southern China to the 0.9 Ma global cooling event.

Journal ArticleDOI
TL;DR: In this article, an intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution and the sources of ozone, the local production rates, and the controlling factors, as well as key species of volatile organic compounds (VOCs), were quantified by integrating a local ozone budget analysis, calculations of the relative incremental reactivity, and an empirical kinetic model approach.
Abstract: An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution. The sources of ozone, the local production rates, and the controlling factors, as well as key species of volatile organic compounds (VOCs), were quantified by integrating a local ozone budget analysis, calculations of the relative incremental reactivity, and an empirical kinetic model approach. It was found that the potential for rapid local ozone formation exists in Chongqing. During ozone pollution episodes, the ozone production rates were found to be high at the upwind station Nan Quan, the urban station Chao Zhan, and the downwind station Jin-Yun Shan. The average local ozone production rate was 30× 10−9 V/V h−1 and the daily integration of the produced ozone was greater than 180×10−9 V/V. High ozone concentrations were associated with urban and downwind air masses. At most sites, the local ozone production was VOC-limited and the key species were aromatics and alkene, which originated mainly from vehicles and solvent usage. In addition, the air masses at the northwestern rural sites were NO x -limited and the local ozone production rates were significantly higher during the pollution episodes due to the increased NO x concentrations. In summary, the ozone abatement strategies of Chongqing should be focused on the mitigation of VOCs. Nevertheless, a reduction in NO x is also beneficial for reducing the regional ozone peak values in Chongqing and the surrounding areas.

Journal ArticleDOI
TL;DR: Chen et al. as mentioned in this paper developed a pixel-object-knowledge-based approach to produce GlobeLand30 by integrating pixel-based classification, object-based processing and knowledge-based interactive verification.
Abstract: Information regarding Land cover and change (LCC) over time is essential for a variety of Societal Benefits Areas (SBA), such as environmental change analysis, geographical condition monitoring, urban and rural management, earth surface process modeling, and sustainable development. Since the middle of 1990s, the international scientific communities have devoted tremendous efforts to Global Land Cover (GLC) mapping, and developed a number of coarser resolution (ranging from 300-m to 1 km) data products. As these products could not provide sufficient spatial details and are far from satisfactory for many applications, the Group on Earth Observations (GEO) and some other international organizations called for actions to move towards finer resolution GLC mapping and monitoring in 2010. In order to meet increasing user needs, China launched an operational GLC mapping project and produced a 30-m GLC data product, GlobeLand30, with 10 classes for years 2000 and 2010 (Chen et al., 2015). In September 2014, GlobeLand30 was donated by China to the United Nations for open access and international sharing. It was reported by Nature as “China: Open access to Earth land-cover map” (Chen et al., 2014) and recognized by international experts as “a milestone achievement in the Earth Observation and open geo-information access” (Ban et al., 2015). In order to further report the innovative developments and applications of GlobeLand30, Science China Earth Sciences has published a special issue, entitled “GlobeLand30 remote sensing mapping innovation and big data analysis”, in the end of 2016. An operational finer-resolution GLC mapping aims to deliver high quality data products and is therefore facing a number of significant scientific and technical challenges, such as characterization of complex landscapes with remote sensing and assurance of data product quality. Due to the high spectral heterogeneity within a single land cover class and significant spectral confusion among different classes, it is extremely difficult to achieve satisfactory thematic accuracy with single per-pixel spectral classifier for the entire globe. A Pixel-Object-Knowledge-based (POK-based) approach was developed to produce GlobeLand30 by integrating pixel-based classification, object-based processing and knowledge-based interactive verification (Chen et al., 2015). With the POK approach, the omission and commission errors caused by spectral confusion within and among land cover types have been significantly reduced, and an overall classification accuracy of 83% was achieved for GlobeLand30. It has been recognized as “feasible and reliable for global land cover mapping” (Ban et al., 2015). In the special issue of Science China Earth Sciences, the detailed methodology and operational utilization of the POK approach have been presented with two land cover classes, i.e., global cropland (Cao et al., 2016) and artificial surfaces (Chen X H et al., 2016). In addition, some other innovative methods developed for GlobeLand30 were also reported, such as geospatial-knowledge-based verification and improvement (Zhang et al., 2016) and spatial heterogeneitybased adaptive sampling (Chen F et al., 2016).

Journal ArticleDOI
TL;DR: In this paper, the authors systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake.
Abstract: At GMT time 13:19, August 8, 2017, an M s7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude ( M w) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.

Journal ArticleDOI
TL;DR: In this paper, the authors defined the temporal and spatial distribution pattern of the Yichang Uplift, which might be one of the important controlling factors for the preservation and distribution of the shale gas in this region, as it has been demonstrated that the area where more of the basal part of the Lungmachi Formation is missing.
Abstract: Stratigraphic hiatuses of variable time intervals within the Rhuddanian to early Aeronian (Llandovery, Silurian) are identified in the area bordering East Chongqing, West Hubei and Northwest Hunan in central China. Their distribution suggested the existence of a local uplift, traditionally named the Yichang Uplift. The diachronous nature of the basal black shale of the Lungmachi Formation crossing different belts of this Uplift signifies the various developing stages during the uplifting process. The present paper defines the temporal and spatial distribution pattern of the Yichang Uplift, which might be one of the important controlling factors for the preservation and distribution of the shale gas in this region, as it has been demonstrated that the shale gas exploration is generally less promising in the areas where more of the basal part of the Lungmachi Formation is missing. Therefore, better understanding of the circumjacent distribution pattern developed throughout the uplifting process may provide the important guidance for the shale gas exploration. The present work is a sister study to the published paper, “Stage-progressive distribution pattern of the Lungmachian black graplolitic shales from Guizhou to Chongqing, Central China”. These two studies thus provide a complete Ordovician-Silurian black shale distribution pattern in the Middle and Upper Yangtze, a region with the major shale gas fields in China.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the North China Craton (NCC) and the subduction of the western Paleo-Pacific slab.
Abstract: The relationship between the Yanshanian Movement, destruction of the North China Craton (NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the eastern Asian continent and margin. The Yanshanian Movement was a globally important change in crustal tectonics during the Middle-Late Jurassic. Previous research has systematically studied the formation and evolution of the Yanshanian Movement, focusing on the timing and location of tectonic movements, and the sedimentary and volcanic strata. However, the question of whether the tectonic activity occurred globally, and the characteristics of the Yanshanian Movement remain debated. The main argument is that if a tectonic movement can only be characterized by a regional or local disconformity, and if the tectonic movement occurred in an intracontinental setting, with extensive deformation but with no disconformity despite volcanic eruptions and magmatic intrusions, accompanied by changes in crustal structure and composition, should it be defined as a tectonic event or process? This question requires further analysis. The main aim of this study is to distinguish whether the Yanshanian Movement is a local feature of the eastern Asian continent, or a global tectonic event related to subduction of the Pacific Plate. In this paper, based on previous research, we discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the NCC and the subduction of the western Paleo-Pacific slab. We emphasize that the Yanshanian Movement in the Middle-Late Jurassic is distinct from the lithospheric thinning responsible for Early Cretaceous extension and magmatism related to the destruction of the NCC. The various tectonic stages were constrained by different dynamics and tectonic settings, or by different tectonic events and processes. Therefore, it is possible that the deformation and reactivation of the NCC contributed to its destruction, in addition to lithospheric thinning. Finally, we discuss whether the Yanshanian Movement was associated with the destruction of the NCC.

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper compared the difference between VES and the net ecosystem services value (NES, after subtracting costs from VES) and to improve evaluations of ecosystem services, they estimated NES for mainland China (including farmland, grassland, forest, and wetland).
Abstract: Protection of the ecological environment is an effective strategy for maintaining ecosystem health, improving provision of ecosystem services, and increasing human well-being. However, traditional calculations of the value of ecosystem services (VES) provide weak guidance because they ignore the costs of these services, leading to economically inefficient strategies. To understand the difference between VES and the net ecosystem services value (NES, after subtracting costs from VES) and to improve evaluations of ecosystem services, we estimated NES for mainland China (including farmland, grassland, forest, and wetland). NES totaled 10.0×10 3 RMB ha −1 yr −1 in 2014, which is only 35.1% of the corresponding VES. Grassland NES was –0.7×10 3 RMB ha −1 yr −1 , in contrast with a positive grassland VES. NES of farmland, grassland, forest, and wetland in 2014 totaled 7.2×10 12 RMB, accounting for 27.0% of China’s GNP. Recent Chinese planning based on VES emphasizes forest conservation and ignores the conservation of other important ecosystems, such as grassland, leading to a continuing loss of China’s natural capital. Due to regional differences in economic conditions, resource endowments, and geographical characteristics, VES and NES differ among regions. To maximize the ecological benefits from conservation, it is necessary to account for these differences by comparing strategies based on NES, thereby choosing projects that maximize both economic and ecological benefits. To maintain the ecological balance, ecological restoration and socioeconomic activities should account for the costs of providing ecosystem services. This is essential to minimize the costs and maximize the benefits of projects.