scispace - formally typeset
Search or ask a question

Showing papers in "Solar Physics in 2009"


Journal ArticleDOI
TL;DR: In this paper, a forward modeling method was developed to study the coronal mass ejections observed with STEREO/SECCHI, using a geometric model of a flux rope to determine the 3D direction of propagation, the three-dimensional velocity and acceleration of the CME front, and in most of the cases the flux rope orientation and length.
Abstract: We describe a forward modeling method developed to study the coronal mass ejections observed with STEREO/SECCHI. We present a survey of 26 CMEs modeled with this method. We selected most of the bright events observed since November 2007 to August 2008, after when the separation was greater than 40° degrees, thus showing noticeable differences between the two views. From these stereoscopic observations and using a geometric model of a flux rope, we are able to determine the three-dimensional direction of propagation, the three-dimensional velocity and acceleration of the CME front, and in most of the cases the flux rope orientation and length. We define a merit function that allows us to partially automate the fit, as well as perform a sensitivity analysis on the model parameters. We find a precision on the longitude and latitude to be of a maximum of ±17° and ±4°, respectively, for a 10% decrease of the merit function but a precision on the flux rope orientation and length to be almost one order of magnitude larger, showing that these parameters are more difficult to estimate using only coronagraph data. Finally, comparison with independent measurements shows a good agreement with the direction and speed we estimated.

534 citations


Journal ArticleDOI
TL;DR: The STEREO spacecraft has two wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected as mentioned in this paper.
Abstract: Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun – Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements.

404 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of noise in the vector magnetic field data are examined through the use of analytic magnetic field models, and two types of noise are added prior to resolving: noise to simulate Poisson photon noise in observed polarization spectra, and a spatial binning to simulate the effect of unresolved structure.
Abstract: The objective testing of algorithms for performing ambiguity resolution in vector magnetic field data is continued, with an examination of the effects of noise in the data. Through the use of analytic magnetic field models, two types of noise are “added” prior to resolving: noise to simulate Poisson photon noise in the observed polarization spectra, and a spatial binning to simulate the effects of unresolved structure. The results are compared through the use of quantitative metrics and performance maps. We find that while no algorithm severely propagates the effects of Poisson noise beyond very local influences, some algorithms are more robust against high photon-noise levels than others. In the case of limited spatial resolution, loss of information regarding fine-scale structure can easily result in erroneous solutions. Our tests imply that photon noise and limited spatial resolution can act so as to make assumptions used in some ambiguity resolution algorithms no longer consistent with the observed magnetogram. We confirm a finding of the earlier comparison study that results can be very sensitive to the details of the treatment of the observed boundary and the assumptions governing that treatment. We discuss the implications of these findings, given the relative sensitivities of the algorithms to the two sources of noise tested here. We also touch on further implications for interpreting observational vector magnetic field data for general solar physics research.

312 citations


Journal ArticleDOI
TL;DR: In this article, a catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum.
Abstract: In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum. The twin spacecraft angular separation increased during this time interval from 2 to 48 degrees. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterization of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. Though each jet appeared morphologically similar in the coronagraph field of view, in the sense of a narrow collimated outward flow of matter, at the source region in the low corona the jet showed different characteristics, which may correspond to different magnetic structures. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events, commonly interpreted as a small-scale (∼35 arc sec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its loop tops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipole footpoints. Five events were termed micro-CME-type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. The remaining 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propagation. A few jets are also found in equatorial coronal holes. In this study we present sample events for each of the jet types using both, STEREO A and STEREO B, perspectives. The typical lifetimes in the SECCHI/EUVI (Extreme UltraViolet Imager) field of view between 1.0 to 1.7 R ⊙ and in SECCHI/COR1 field of view between 1.4 to 4 R ⊙ are obtained, and the derived speeds are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more detail in further studies.

204 citations


Journal ArticleDOI
TL;DR: In this article, the STEREO wave instrument (S/WAVES) has detected a very large number of intense voltage pulses, which are produced by impact ionisation of nanoparticles.
Abstract: The STEREO wave instrument (S/WAVES) has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.

148 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify coronal holes using a histogram-based intensity thresholding technique and compare their properties to fast solar wind streams at three different points in the heliosphere.
Abstract: We identify coronal holes using a histogram-based intensity thresholding technique and compare their properties to fast solar wind streams at three different points in the heliosphere The thresholding technique was tested on EUV and X-ray images obtained using instruments onboard STEREO, SOHO and Hinode The full-disk images were transformed into Lambert equal-area projection maps and partitioned into a series of overlapping sub-images from which local histograms were extracted The histograms were used to determine the threshold for the low intensity regions, which were then classified as coronal holes or filaments using magnetograms from the SOHO/MDI For all three instruments, the local thresholding algorithm was found to successfully determine coronal hole boundaries in a consistent manner Coronal hole properties extracted using the segmentation algorithm were then compared with in situ measurements of the solar wind at ∼ 1 AU from ACE and STEREO Our results indicate that flux tubes rooted in coronal holes expand super-radially within 1 AU and that larger (smaller) coronal holes result in longer (shorter) duration high-speed solar wind streams

131 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the images taken by the Heliospheric Imagers (HIs) part of the SECCHI imaging package onboard the pair of STEREO spacecraft, providing information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs).
Abstract: The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remote-sensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54° to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.

121 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented a detailed analysis of an EUV wave observed by the EUVI disk imagers on 7 December 2007 when the STEREO spacecraft separation was ≈ 45°.
Abstract: One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO was the intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called EIT waves is still strongly debated with either wave (primarily fast-mode MHD waves) or nonwave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies in the limitations of the EIT observations that have been used almost exclusively for their study. They suffer from low cadence and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations onboard the STEREO mission. The EUVI telescopes provide high-cadence, simultaneous multitemperature coverage and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on 7 December 2007 when the STEREO spacecraft separation was ≈ 45°. Both a small flare and a coronal mass ejection (CME) were associated with the wave. We also offer the first comprehensive comparison of the various wave interpretations against the observations. Our major findings are as follows: (1) High-cadence (2.5-minute) 171 A images showed a strong association between expanding loops and the wave onset and significant differences in the wave appearance between the two STEREO viewpoints during its early stages; these differences largely disappeared later; (2) the wave appears at the active region periphery when an abrupt disappearance of the expanding loops occurs within an interval of 2.5 minutes; (3) almost simultaneous images at different temperatures showed that the wave was most visible in the 1 – 2 MK range and almost invisible in chromospheric/transition region temperatures; (4) triangulations of the wave indicate it was rather low lying (≈ 90 Mm above the surface); (5) forward-fitting of the corresponding CME as seen by the COR1 coronagraphs showed that the projection of the best-fit model on the solar surface was inconsistent with the location and size of the co-temporal EUV wave; and (6) simulations of a fast-mode wave were found in good agreement with the overall shape and location of the observed wave. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.

121 citations


Journal ArticleDOI
TL;DR: In this paper, the ordinal logistic regression model has been used to predict solar flares in the next 1-day time period using the SOHO MDI magnetogram and three predictive parameters: total unsigned magnetic flux, length of the strong-gradient neutral line and total magnetic dissipation.
Abstract: In this study we use the ordinal logistic regression method to establish a prediction model, which estimates the probability for each solar active region to produce X-, M-, or C-class flares during the next 1-day time period. The three predictive parameters are (1) the total unsigned magnetic flux T flux, which is a measure of an active region’s size, (2) the length of the strong-gradient neutral line L gnl, which describes the global nonpotentiality of an active region, and (3) the total magnetic dissipation E diss, which is another proxy of an active region’s nonpotentiality. These parameters are all derived from SOHO MDI magnetograms. The ordinal response variable is the different level of solar flare magnitude. By analyzing 174 active regions, L gnl is proven to be the most powerful predictor, if only one predictor is chosen. Compared with the current prediction methods used by the Solar Monitor at the Solar Data Analysis Center (SDAC) and NOAA’s Space Weather Prediction Center (SWPC), the ordinal logistic model using L gnl, T flux, and E diss as predictors demonstrated its automatic functionality, simplicity, and fairly high prediction accuracy. To our knowledge, this is the first time the ordinal logistic regression model has been used in solar physics to predict solar flares.

112 citations


Journal ArticleDOI
TL;DR: In this paper, Staudacher's drawings were used to determine sunspot positions for the period 1749-1796, and the resulting butterfly diagram shows a highly-populated Equator during the first two cycles (cycles 0 and 1 in the usual counting since 1749).
Abstract: Digitized images of the drawings by J.C. Staudacher were used to determine sunspot positions for the period 1749 – 1796. From the entire set of drawings, 6285 sunspot positions were obtained for a total of 999 days. Various methods have been applied to find the orientation of the solar disk, which is not given for the vast majority of the drawings by Staudacher. Heliographic latitudes and longitudes in the Carrington rotation frame were determined. The resulting butterfly diagram shows a highly-populated Equator during the first two cycles (cycles 0 and 1 in the usual counting since 1749). An intermediate period is cycle 2, whereas cycles 3 and 4 show a typical butterfly shape. A tentative explanation may be the transient dominance of a quadrupolar magnetic field during the first two cycles.

107 citations


Journal ArticleDOI
TL;DR: Experimental results indicate that the performance of the short-term solar flare prediction model within the sequential supervised learning framework is significantly improved.
Abstract: Solar flares are powered by the energy stored in magnetic fields, so evolutionary information of the magnetic field is important for short-term prediction of solar flares. However, the existing solar flare prediction models only use the current information of the active region. A sequential supervised learning method is introduced to add the evolutionary information of the active region into a prediction model. The maximum horizontal gradient, the length of the neutral line, and the number of singular points extracted from SOHO/MDI longitudinal magnetograms are used in the model to describe the nonpotentiality and complexity of the photospheric magnetic field. The evolutionary characteristics of the predictors are analyzed by using autocorrelation functions and mutual information functions. The analysis results indicate that a flare is influenced by the 3-day photospheric magnetic field information before flare eruption. A sliding-window method is used to add evolutionary information of the predictors into machine learning algorithms, then C4.5 decision tree and learning vector quantization are employed to predict the flare level within 48 hours. Experimental results indicate that the performance of the short-term solar flare prediction model within the sequential supervised learning framework is significantly improved.

Journal ArticleDOI
TL;DR: In this paper, a multwavelength analysis of an M1.6 flare occurring in the NOAA active region 10365 on 27 May 2003, in which a large new bipole emerges in a decaying active region is presented.
Abstract: The aim of this paper is to look at the magnetic helicity structure of an emerging active region and show that both emergence and flaring signatures are consistent with a same sign for magnetic helicity. We present a multiwavelength analysis of an M1.6 flare occurring in the NOAA active region 10365 on 27 May 2003, in which a large new bipole emerges in a decaying active region. The diverging flow pattern and the “tongue” shape of the magnetic field in the photosphere with elongated polarities are highly suggestive of the emergence of a twisted flux tube. The orientation of these tongues indicates the emergence of a flux tube with a right-hand twist (i.e., positive magnetic helicity). The flare signatures in the chromosphere are ribbons observed in Hα by the MSDP spectrograph in the Meudon solar tower and in 1600 A by TRACE. These ribbons have a J shape and are shifted along the inversion line. The pattern of these ribbons suggests that the flare was triggered by magnetic reconnection at coronal heights below a twisted flux tube of positive helicity, corresponding to that of the observed emergence. It is the first time that such a consistency between the signatures of the emerging flux through the photosphere and flare ribbons has been clearly identified in observations. Another type of ribbons observed during the flare at the periphery of the active region by the MSDP and SOHO/EIT is related to the existence of a null point, which is found high in the corona in a potential field extrapolation. We discuss the interpretation of these secondary brightenings in terms of the “breakout” model and in terms of plasma compression/heating within large-scale separatrices.

Journal ArticleDOI
TL;DR: In this paper, a filament eruption accompanied by a B9.5 flare, coronal dimming, and an EUV wave was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT.
Abstract: A filament eruption, accompanied by a B9.5 flare, coronal dimming, and an EUV wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT. Here, we use observations from the SECCHI/EUVI telescopes and other solar observations to analyze the behavior and geometry of the filament before and during the eruption. At this time, STEREO A and B were separated by about 8.5°, sufficient to determine the three-dimensional structure of the filament using stereoscopy. The filament could be followed in SECCHI/EUVI 304 A stereoscopic data from about 12 hours before to about 2 hours after the eruption, allowing us to determine the 3D trajectory of the erupting filament. From the 3D reconstructions of the filament and the chromospheric ribbons in the early stage of the eruption, simultaneous heating of both the rising filamentary material and the chromosphere directly below is observed, consistent with an eruption resulting from magnetic reconnection below the filament. Comparisons of the filament during eruption in 304 A and Hα show that when it becomes emissive in He II, it tends to disappear in Hα , indicating that the disappearance probably results from heating or motion, not loss, of filamentary material.

Journal ArticleDOI
TL;DR: In this article, the rotational angular speed of a rotating sunspot in active region 10930 was determined by applying a non-linear affine velocity estimator (NAVE) to high-resolution G-band images taken by the Solar Optical Telescope (SOT) onboard the Hinode satellite.
Abstract: We study the pattern and behavior of a rotating sunspot in Active Region 10930. The rotational angular speed has been extracted from the apparent motions of the sunspot determined by applying a new optical technique – called non-linear affine velocity estimator (NAVE) – to high-resolution G-band images taken by the Solar Optical Telescope (SOT) onboard the Hinode satellite. The structure and dynamics of coronal loops in this active region have been examined using the images obtained by the X-Ray Telescope (XRT) and the spectral data taken by the Extreme-ultraviolet Imaging Spectrometer (EIS), both also onboard Hinode. Our results are summarized as follows: i) The small sunspot of positive polarity rotated counterclockwise about its center by 540° during the period of five days. ii) Its angular velocity varied with the azimuth angle as well as the radial distance, being affected by the asymmetric shape of the umbra. iii) The angular velocity increased up to 8° h−1 until 13 December as the sunspot grew, and then decreased rapidly down to 3° h−1 on the next day as the sunspot decayed. iv) The coronal loops that connected the two sunspots became sigmoidal in shape. v) The coronal emissions from the regions around the rotating sunspot were blueshifted, which may indicate the expansion of the coronal loops. Our results suggest that the rotation of the sunspot may be closely related to the dynamic development of emerging twisted magnetic fields.

Journal ArticleDOI
TL;DR: In this article, the authors found that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 15 Mm, above every 322 Mm2 patch of quiet Sun magnetogram spanning the two latest solar minima.
Abstract: The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points These points can be found directly in a potential field extrapolation or their density can be estimated from the Fourier spectrum of the magnetogram The spectral estimate, in which the extrapolated field is assumed to be random and homogeneous with Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO’s MDI The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 15 Mm, above every 322 Mm2 patch of quiet Sun Analysis of 562 quiet Sun magnetograms spanning the two latest solar minima shows that the null point density is relatively constant with roughly 10% day-to-day variation At heights above 15 Mm, the null point density decreases approximately as the inverse cube of height The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 〈|φ|〉=10×1019 Mx distributed randomly with density n=0007 Mm−2

Journal ArticleDOI
TL;DR: In this article, the authors determined the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form.
Abstract: The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe CMEs in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be ∼1.5R s (solar radii), which coincides with the distance at which the Alfven speed profile has a minimum value. We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfven speed peaks (∼3R s – 4R s). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5R s to 4R s. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (∼1.5R s) of STEREO CMEs at the time of type II bursts is smaller than that (2.2R s) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1R s – 2R s by the time the CME left the LASCO field of view.

Journal ArticleDOI
TL;DR: In this paper, the authors presented results on the geometry of a magnetic cloud (MC) from a comprehensive analysis of wind and STEREO observations. But the results were not consistent with the linear force-free Lundquist model.
Abstract: We present results on the geometry of a magnetic cloud (MC) on 23 May 2007 from a comprehensive analysis of Wind and STEREO observations. We first apply a Grad – Shafranov reconstruction to the STEREO-A plasma and magnetic field data, delivered by the PLASTIC and IMPACT instruments. We then optimize the resulting field map with the aid of observations by Wind, which were made at the very outer boundary of the cloud, at a spacecraft angular separation of 6°. For the correct choice of reconstruction parameters such as axis orientation, interval and grid size, we find both a very good match between the predicted magnetic field at the position of Wind and the actual observations as well as consistent timing. We argue that the reconstruction captures almost the full extent of the cross-section of the cloud. The resulting shape transverse to the invariant axis consists of distorted ellipses and is slightly flattened in the direction of motion. The MC axis is inclined at −58° to the ecliptic with an axial field strength of 12 nT. We derive integrated axial fluxes and currents with increased precision, which we contrast with the results from linear force-free fitting. The helical geometry of the MC with almost constant twist (≈1.5 turns AU−1) is not consistent with the linear force-free Lundquist model. We also find that the cloud is non-force-free (|J ⊥ |/|J ∥ |>0.3) in about a quarter of the cloud cross sectional area, particularly in the back part which is interacting with the trailing high speed stream. Based on the optimized reconstruction we put forward preliminary guidelines for the improved use of single-spacecraft Grad – Shafranov reconstruction. The results also give us the opportunity to compare the CME direction inferred from STEREO/SECCHI observations by Mierla et al. (Solar Phys. 252, 385, 2008) with the three-dimensional configuration of the MC at 1 AU. This yields an almost radial CME propagation from the Sun to the Earth.

Journal ArticleDOI
TL;DR: In this article, the formation of the jet is discussed and scenarios to explain the main features of the events: the relationship with the expected surface magnetism, the rapid and sudden radial motion, and possibly the heating, based on the assumption that the jet occurs above a null point of the coronal magnetic field.
Abstract: New X-ray observations of the north polar region taken from the X-ray Telescope (XRT) of the Hinode spacecraft are used to analyze several time sequences showing small loop brightenings with a long ray above. We focus on the formation of the jet and discuss scenarios to explain the main features of the events: the relationship with the expected surface magnetism, the rapid and sudden radial motion, and possibly the heating, based on the assumption that the jet occurs above a null point of the coronal magnetic field. We conclude that 2-D reconnection models should be complemented in order to explain the observational details of these events and suggest that alternative scenarios may exist.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the structure of the slow solar wind using the observations by the Wind and STEREO spacecraft during two Carrington rotations (2054 and 2055).
Abstract: It has been realized for some time that the slow solar wind with its embedded heliospheric current sheet often exhibits complex features suggesting at least partially transient origin. In this paper we investigate the structure of the slow solar wind using the observations by the Wind and STEREO spacecraft during two Carrington rotations (2054 and 2055). These occur at the time of minimum solar activity when the interplanetary medium is dominated by recurrent high-speed streams and large-scale interplanetary coronal mass ejections (ICMEs) are rare. However, the signatures of transients with small scale-sizes and/or low magnetic field strength (comparable with the typical solar wind value, ∼ 5 nT) are frequently found in the slow solar wind at these times. These events do not exhibit significant speed gradients across the structure, but instead appear to move with the surrounding flow. Source mapping using models based on GONG magnetograms suggests that these transients come from the vicinity of coronal source surface sector boundaries. In situ they are correspondingly observed in the vicinity of high density structures where the dominant electron heat flux reverses its flow polarity. These weak transients might be indications of dynamical changes at the coronal hole boundaries or at the edges of the helmet streamer belt previously reported in coronagraph observations. Our analysis supports the idea that even at solar minimum, a considerable fraction of the slow solar wind is transient in nature.

Journal ArticleDOI
TL;DR: In this article, a method for automated detection of polar coronal holes is presented, called perimeter tracing, which uses a series of 171, 195, and 304 A full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO over solar cycle 23 to measure the perimeter of polar holes as they appear on the limbs.
Abstract: A new method for automated detection of polar coronal holes is presented. This method, called perimeter tracing, uses a series of 171, 195, and 304 A full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO over solar cycle 23 to measure the perimeter of polar coronal holes as they appear on the limbs. Perimeter tracing minimizes line-of-sight obscurations caused by the emitting plasma of the various wavelengths by taking measurements at the solar limb. Perimeter tracing also allows for the polar rotation period to emerge organically from the data as 33 days. We have called this the Harvey rotation rate and count Harvey rotations starting 4 January 1900. From the measured perimeter, we are then able to fit a curve to the data and derive an area within the line of best fit. We observe the area of the northern polar hole area in 1996, at the beginning of solar cycle 23, to be about 4.2% of the total solar surface area and about 3.6% in 2007. The area of the southern polar hole is observed to be about 4.0% in 1996 and about 3.4% in 2007. Thus, both the north and south polar hole areas are no more than 15% smaller now than they were at the beginning of cycle 23. This compares to the polar magnetic field measured to be about 40% less now than it was a cycle ago.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites.
Abstract: We analyze a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites. The analyses demonstrate the new opportunities offered by the STEREO multispacecraft configuration for diagnosing the structure of in situ events and relating them to their solar sources. The investigated period was characterized by two high-speed solar wind streams and magnetic clouds observed in the vicinity of the sector boundary. The observing satellites were separated by a longitudinal distance comparable to the typical radial extent of magnetic clouds at 1 AU (fraction of an AU), and, indeed, clear differences were evident in the records from these spacecraft. Two partial-halo coronal mass ejections (CMEs) were launched from the same active region less than a day apart, the first on 19 May and the second on 20 May 2007. The clear signatures of the magnetic cloud associated with the first CME were observed by STEREO B and Wind while only STEREO A recorded clear signatures of the magnetic cloud associated with the latter CME. Both magnetic clouds appeared to have interacted strongly with the ambient solar wind and the data showed evidence that they were a part of the coronal streamer belt. Wind and STEREO B also recorded a shocklike disturbance propagating inside a magnetic cloud that compressed the field and plasma at the cloud’s trailing portion. The results illustrate how distant multisatellite observations can reveal the complex structure of the extension of the coronal streamer into interplanetary space even during the solar activity minimum.

Journal ArticleDOI
TL;DR: In this article, the ENLIL inner-heliosphere solar-wind model together with the MAS or Wang-Sheeley-Arge (WSA) coronal models were used to describe the steady solar wind stream structure and its origins in the solar corona.
Abstract: We present results of solar-wind parameters generated by 3D MHD models. The ENLIL inner-heliosphere solar-wind model together with the MAS or Wang – Sheeley – Arge (WSA) coronal models, describe the steady solar-wind stream structure and its origins in the solar corona. The MAS/ENLIL and WSA/ENLIL models have been tuned to provide a simulation of plasma moments as well as interplanetary magnetic-field magnitude and polarity in the absence of disturbances from coronal transients. To investigate how well the models describe the ambient solar wind structure from the Sun out to 1 AU, the model results are compared to solar-wind measurements from the ACE spacecraft. We find that there is an overall agreement between the observations and the model results for the general large-scale solar-wind structures and trends, such as the timing of the high-density structures and the low- and high-speed winds, as well as the magnetic sector structures. The time period of our study is the declining phase of Solar Cycle 23 when the solar activity involves well-defined stream structure, which is ideal for testing a quasi-steady-state solar-wind model.

Journal ArticleDOI
TL;DR: In this article, four methods for reconstructing coronal mass ejections (CMEs) and their propagation direction in space were applied to three structured CMEs observed by COR1 and COR2 instruments, respectively, on 15 May 2007, 31 August 2007 and 25 March 2008.
Abstract: The data from SECCHI-COR1 and SECCHI-COR2 coronagraphs onboard the STEREO mission, which was launched in October 2006, provide us with the first-ever stereoscopic images of the Sun’s corona. These observations were found to be useful in inferring the three-dimensional structure of coronal mass ejections (CMEs) and their propagation direction in space. We apply four methods for reconstructing CMEs: i) Forward modeling technique; ii) Local correlation tracking (to identify the same feature in COR Ahead and COR Behind images) plus tie-point reconstruction technique; iii) Center of mass of the structures in a given epipolar plane plus tie-point reconstruction technique; iv) Polarization ratio technique. The four techniques are applied to three structured CMEs observed by COR1 and COR2 instruments, respectively, on 15 May 2007, 31 August 2007, and 25 March 2008. A comparison of the results obtained from the application of the four reconstruction algorithms is presented and discussed.

Journal ArticleDOI
TL;DR: In this paper, an automated method of detection based on their morphological appearance on synoptic maps is presented, which is based on adaptive filtering and segmentation, followed by merging with high-level knowledge.
Abstract: The LASCO-C2 coronagraph aboard the SOHO solar observatory has been providing a continuous flow of coronal images since 1996. Synoptic maps for each Carrington rotation have been built from these images, and offer a global view of the temporal evolution of the solar corona, particularly the occurrence of transient events. Coronal Mass Ejections (CMEs) present distinct signatures thus offering a novel approach to the problem of their identification and characterization. We present in this article an automated method of detection based on their morphological appearance on synoptic maps. It is based on adaptive filtering and segmentation, followed by merging with high-level knowledge. The program builds a catalog which lists the CMEs detected for each Carrington Rotation, together with their main estimated parameters: time of appearance, position angle, angular extent, average velocity and intensity. Our final catalog LASCO-ARTEMIS (Automatic Recognition of Transient Events and Marseille Inventory from Synoptic maps) is compared with existing catalogs, CDAW, CACTUS and SEEDS. We find that, likewise the automated CACTUS and SEEDS catalogs, we detect many more events than the CDAW catalog which is based on visual detection. The total number of detected CMEs strongly depends upon the sensitivity to small, faint and numerous events.

Journal ArticleDOI
TL;DR: In this article, the authors analyze line-of-sight observations of the 24 and 25 January 2007 CMEs and fill the 20-hour gap in SECCHI coverage in 25 January by performing a numerical simulation using a three-dimensional magneto-hydrodynamic (MHD) code.
Abstract: The SECCHI instruments aboard the recently launched STEREO spacecraft enable for the first time the continuous tracking of coronal mass ejections (CMEs) from the Sun to 1 AU. We analyze line-of-sight observations of the 24 – 25 January 2007 CMEs and fill the 20-hour gap in SECCHI coverage in 25 January by performing a numerical simulation using a three-dimensional magneto-hydrodynamic (MHD) code, the Space Weather Modeling Framework (SWMF). We show how the observations reflect the interaction of the two successive CMEs with each other and with the structured solar wind. We make a detailed comparison between the observations and synthetic images from our model, including time-elongation maps for several position angles. Having numerical simulations to disentangle observational from physical effects, we are able to study the three-dimensional nature of the ejections and their evolution in the inner heliosphere. This study reflects the start of a new era where, on one hand, models of CME propagation and interaction can be fully tested by using heliospheric observations and, on the other hand, observations can be better interpreted by using global numerical models.

Journal ArticleDOI
TL;DR: In this paper, the authors compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories.
Abstract: Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.

Journal ArticleDOI
TL;DR: Pizzo and Biesecker as discussed by the authors proposed a geometric localization technique based on simple triangulation concepts and utilizes a series of lines of sight from two space-based observatories to determine gross characteristics of CMEs, such as location and velocity.
Abstract: The geometric localization technique (Pizzo and Biesecker, Geophys Res Lett 31, 21802, 2004) can readily be used with Solar Terrestrial Relations Observatory (STEREO) Space Weather Beacon data to observe coronal mass ejection (CME) propagation within three-dimensional space in near-real time This technique is based upon simple triangulation concepts and utilizes a series of lines of sight from two space-based observatories to determine gross characteristics of CMEs, such as location and velocity Since this work is aimed at space weather applications, the emphasis is on use of COR2 coronagraph data, which has a field of view from 25R ⊙ to 15R ⊙; this spatial coverage allows us to observe the early temporal development of a CME, and hence to calculate its velocity, even for very fast CMEs We apply this technique to highly-compressed COR2 beacon images for several CMEs at various spacecraft separation angles: 21 August 2007, when the separation angle between the two spacecraft was 26°; 31 December 2007 and 2 January 2008, when the separation angle was 44°; and 17 October 2008, when the spacecraft separation was 79° We present results on the speed and direction of propagation for these events and discuss the error associated with this technique We also compare our results to the two-dimensional plane-of-sky speeds calculated from STEREO and SOHO

Journal ArticleDOI
TL;DR: In this paper, the impact of projection effects by tracking CME leading edge features in the plane of sky (traditional CME tracking) from combined STEREO-SECCHI and SOHO-LASCO observations up to 20R ⊙ was studied.
Abstract: Based on a set of 11 CME events we study the impact of projection effects by tracking CME leading edge features in the plane of sky (traditional CME tracking) from combined STEREO-SECCHI and SOHO-LASCO observations up to 20R ⊙. By using CME observations from two vantage points and applying triangulation techniques, the source region location of the CME on the solar surface was determined (heliospheric longitude and latitude) to correct for projection effects. With this information, the directivity and “true” speed of a CME can be estimated in a simple way. The comparison of the results obtained from the spacecraft pairs SOHO-LASCO/STEREO-A and SOHO-LASCO/STEREO-B allows us to study the reliability of the method. The determined CME source region is generally coincident within ≲10°.

Journal ArticleDOI
TL;DR: In this article, the authors focus on the year 2007 when the solar corona exhibited large, long-lived mid-to-low latitude coronal holes and polar hole extensions observed by both SOHO and STEREO imagers, and apply the WSA solar wind model currently running at the NOAA Space Weather Prediction Center with the expectation that it should perform its best at this quiet time.
Abstract: The declining phases of solar cycles are known for their high speed solar wind streams that dominate the geomagnetic responses during this period. Outstanding questions about these streams, which can provide the fastest winds of the solar cycle, concern their solar origins, persistence, and predictability. The declining phase of cycle 23 has lasted significantly longer than the corresponding phases of the previous two cycles. Solar magnetograph observations suggest that the solar polar magnetic field is also ∼ 2 – 3 times weaker. The launch of STEREO in late 2006 provided additional incentive to examine the origins of what is observed at 1 AU in the recent cycle, with the OMNI data base at the NSSDC available as an Earth/L1 baseline for comparisons. Here we focus on the year 2007 when the solar corona exhibited large, long-lived mid-to-low latitude coronal holes and polar hole extensions observed by both SOHO and STEREO imagers. STEREO provides in situ measurements consistent with rigidly corotating solar wind stream structure at up to ∼ 45° heliolongitude separation by late 2007. This stability justifies the use of magnetogram-based steady 3D solar wind models to map the observed high speed winds back to their coronal sources. We apply the WSA solar wind model currently running at the NOAA Space Weather Prediction Center with the expectation that it should perform its best at this quiet time. The model comparisons confirm the origins of the observed high speed streams expected from the solar images, but also reveal uncertainties in the solar wind source mapping associated with this cycle’s weaker solar polar fields. Overall, the results illustrate the importance of having accurate polar fields in synoptic maps used in solar wind forecast models. At the most fundamental level, they demonstrate the control of the solar polar fields over the high speed wind sources, and thus one specific connection between the solar dynamo and the solar wind character.

Journal ArticleDOI
TL;DR: In this paper, the geometric and kinematic characteristics of interplanetary coronal mass ejections (ICMEs) using data obtained by the LASCO coronagraphs, the Solar Mass Ejection Imager (SMEI), and the SECCHI imaging experiments on the STEREO spacecraft were investigated.
Abstract: We are investigating the geometric and kinematic characteristics of interplanetary coronal mass ejections (ICMEs) using data obtained by the LASCO coronagraphs, the Solar Mass Ejection Imager (SMEI), and the SECCHI imaging experiments on the STEREO spacecraft. The early evolution of CMEs can be tracked by the LASCO C2 and C3 and SECCHI COR1 and COR2 coronagraphs, and the HI and SMEI instruments can track their ICME counterparts through the inner heliosphere. The HI fields of view (4 – 90°) overlap with the SMEI field of view (> 20° to all sky) and, thus, both instrument sets can observe the same ICME. In this paper we present results for ICMEs observed on 24 – 29 January 2007, when the STEREO spacecraft were still near Earth so that both the SMEI and STEREO views of large ICMEs in the inner heliosphere coincided. These results include measurements of the structural and kinematic evolution of two ICMEs and comparisons with drive/drag kinematic, 3D tomographic reconstruction, the HAFv2 kinematic, and the ENLIL MHD models. We find it encouraging that the four model runs generally were in agreement on both the kinematic evolution and appearance of the events. Because it is essential to understand the effects of projection across large distances, that are not generally crucial for events observed closer to the Sun, we discuss our analysis procedure in some detail.