scispace - formally typeset
Open AccessPosted Content

3D Dynamic Point Cloud Denoising via Spatio-temporal Graph Modeling.

Reads0
Chats0
TLDR
Experimental results show that the proposed method outperforms frame-by-frame denoising from state-of-the-art static point cloud Denoising approaches.
Abstract
The prevalence of accessible depth sensing and 3D laser scanning techniques has enabled the convenient acquisition of 3D dynamic point clouds, which provide efficient representation of arbitrarily-shaped objects in motion. Nevertheless, dynamic point clouds are often perturbed by noise due to hardware, software or other causes. While many methods have been proposed for the denoising of static point clouds, dynamic point cloud denoising has not been studied in the literature yet. Hence, we address this problem based on the proposed spatio-temporal graph modeling, exploiting both the intra-frame similarity and inter-frame consistency. Specifically, we first represent a point cloud sequence on graphs and model it via spatio-temporal Gaussian Markov Random Fields on defined patches. Then for each target patch, we pose a Maximum a Posteriori estimation, and propose the corresponding likelihood and prior functions via spectral graph theory, leveraging its similar patches within the same frame and corresponding patch in the previous frame. This leads to our problem formulation, which jointly optimizes the underlying dynamic point cloud and spatio-temporal graph. Finally, we propose an efficient algorithm for patch construction, similar/corresponding patch search, intra- and inter-frame graph construction, and the optimization of our problem formulation via alternating minimization. Experimental results show that the proposed method outperforms frame-by-frame denoising from state-of-the-art static point cloud denoising approaches.

read more

References
More filters
Journal ArticleDOI

Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering

TL;DR: An algorithm based on an enhanced sparse representation in transform domain based on a specially developed collaborative Wiener filtering achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
Book

Spectral Graph Theory

TL;DR: Eigenvalues and the Laplacian of a graph Isoperimetric problems Diameters and eigenvalues Paths, flows, and routing Eigen values and quasi-randomness
Proceedings ArticleDOI

A non-local algorithm for image denoising

TL;DR: A new measure, the method noise, is proposed, to evaluate and compare the performance of digital image denoising methods, and a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image is proposed.
Proceedings ArticleDOI

3D is here: Point Cloud Library (PCL)

TL;DR: PCL (Point Cloud Library) is presented, an advanced and extensive approach to the subject of 3D perception that contains state-of-the art algorithms for: filtering, feature estimation, surface reconstruction, registration, model fitting and segmentation.
Journal ArticleDOI

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains

TL;DR: The field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process high-dimensional data on graphs as discussed by the authors, which are the analogs to the classical frequency domain and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs.
Related Papers (5)