scispace - formally typeset
Open AccessJournal ArticleDOI

A Combination of Relative-Numerical Dating Methods Indicates Two High Alpine Rock Glacier Activity Phases After the Glacier Advance of the Younger Dryas

TLDR
In this paper, Schmidt-hammer and weathering rind measurements were used to date rock glaciers in the Albula area of the eastern Swiss Alps, and the results showed that the number of active and relict glaciers increased with increasing surface ages.
Abstract
To exploit the potential of rock glaciers as indicators of past climate condition it is first necessary to date them. The combined application of both relative and absolute dating techniques is a promising approach. In this study, we present Schmidt-hammer rebound value measurements and weathering rind thicknesses on four active and one relict rock glacier in the Albula area of the eastern Swiss Alps. Associated landforms such as the moraines in front of rock glaciers and glacially polished bedrock also were used to set up the temporal framework. This was done using soil chemical analyses, radiocarbon dating of the stable fraction of soil organic matter and surface exposure dating of boulders. Schmidt-hammer and weathering rind measurements showed, in most cases, well-pronounced trends with increasing surface ages. These values are in line with measurements from other nearby rock glaciers with comparable lithologies. Use of this information together with the numeric ages makes it possible to derive two main activity phases: one started soon after the ice retreat following the Younger Dryas, the main activity occurred most likely in the early Holocene and lasted approximately until the Holocene climate optimum. The second activity phase continues today and had an unclear start between 10 to 6 cal ky BP.

read more

Content maybe subject to copyright    Report

ZurichOpenRepositoryand
Archive
UniversityofZurich
UniversityLibrary
Strickhofstrasse39
CH-8057Zurich
www.zora.uzh.ch
Year:2011
Acombinationofrelative-numericaldatingmethodsindicatestwohigh
AlpinerockglacieractivityphasesaftertheglacieradvanceoftheYounger
Dryas
Böhlert,R;Compeer,M;Egli,M;Brandova,D;Maisch,M;Kubik,PW;Haeberli,W
Abstract:To exploitthe potentialof rockglaciers as indicatorsof pastclimate conditionit isrst
necessarytodatethem.Thecombinedapplicationofbothrelativeandabsolutedatingtechniquesis
apromising approach.Inthis study, wepresentSchmidt-hammerrebound valuemeasurementsand
weatheringrindthicknessesonfouractiveandonerelictrockglacierintheAlbulaareaoftheeastern
SwissAlps.Associatedlandformssuchasthemorainesinfrontofrockglaciersandglaciallypolished
bedrockalsowereusedtosetupthetemporalframework.Thiswasdoneusingsoilchemicalanalyses,
radiocarbondatingofthestablefractionofsoilorganicmatterandsurfaceexposuredatingofboulders.
Schmidt-hammerandweatheringrindmeasurementsshowed,inmostcases,well-pronouncedtrendswith
increasingsurfaceages.Thesevaluesareinlinewithmeasurementsfromothernearbyrockglacierswith
comparablelithologies.Useofthisinformationtogetherwiththenumericagesmakesitpossibletoderive
twomainactivityphases: onestartedsoonaftertheiceretreatfollowingtheYoungerDryas,themain
activityoccurredmostlikelyintheearlyHoloceneandlastedapproximatelyuntiltheHoloceneclimate
optimum.Thesecondactivityphasecontinuestodayandhadanunclearstartbetween10to6calky
BP.
DOI:https://doi.org/10.2174/1874923201104010115
PostedattheZurichOpenRepositoryandArchive,UniversityofZurich
ZORAURL:https://doi.org/10.5167/uzh-42941
JournalArticle
Originallypublishedat:
Böhlert,R; Compeer,M; Egli, M; Brandova,D; Maisch,M; Kubik, P W; Haeberli,W (2011).A
combinationofrelative-numericaldatingmethodsindicatestwohighAlpinerockglacieractivityphases
aftertheglacieradvanceoftheYoungerDryas.OpenGeographyJournal,(4):115-130.
DOI:https://doi.org/10.2174/1874923201104010115

The Open Geography Journal, 2010, 3, 281-296 281!
!
1874-9232/10 2010 Bentham Open
Open Access
A Combination of Relative-Numerical Dating Methods Indicates Two High
Alpine Rock Glacier Activity Phases After the Glacier Advance of the
Younger Dryas
"#$%&!'(&$)*+
,
-!./0&#)$!123%))*
,
-!.#*456!78$/
9-,
-!:#83#*!'*#;<2=>
,
-!.#?!.#/60&
,
-!!
@)+)*!AB!C5D/4
E
-!A/$F*/)<!G#)D)*$/
,
!
1
Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland
2
Institute of Ion Beam Physics, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
Abstract: H2!)?%$2/+!+&)!%2+);+/#$!2F!*204!8$#0/)*6!#6!/;</0#+2*6!2F!%#6+!0$/3#+)!02;</+/2;!/+!/6!F/*6+!;)0)66#*I!+2!<#+)!+&)3B!
H&)! 023D/;)<! #%%$/0#+/2;! 2F! D2+&! *)$#+/=)! #;<! #D62$5+)! <#+/;8! +)0&;/J5)6! /6! #! %*23/6/;8! #%%*2#0&B! K;! +&/6! 6+5<I-! L)!
%*)6);+!M0&3/<+N&#33)*!*)D25;<!=#$5)!3)#65*)3);+6!#;<!L)#+&)*/;8!*/;<!+&/04;)66)6!2;!F25*!#0+/=)!#;<!2;)!*)$/0+!*204!
8$#0/)*!/;!+&)!O$D5$#!#*)#!2F!+&)!)#6+)*;!ML/66!O$%6B!O6620/#+)<!$#;<F2*36!650&!#6!+&)!32*#/;)6!/;!F*2;+!2F!*204!8$#0/)*6!
#;<! 8$#0/#$$I! %2$/6&)<! D)<*204! #$62! L)*)! 56)<! +2! 6)+! 5%! +&)! +)3%2*#$! F*#3)L2*4B! H&/6! L#6! <2;)! 56/;8! 62/$! 0&)3/0#$!
#;#$I6)6-! *#</20#*D2;! <#+/;8! 2F! +&)! 6+#D$)! F*#0+/2;! 2F! 62/$! 2*8#;/0! 3#++)*! #;<! 65*F#0)! )?%265*)! <#+/;8! 2F! D25$<)*6B!
M0&3/<+N&#33)*! #;<! L)#+&)*/;8! */;<! 3)#65*)3);+6! 6&2L)<-! /;! 326+! 0#6)6-! L)$$N%*2;25;0)<! +*);<6! L/+&! /;0*)#6/;8!
65*F#0)! #8)6B!H&)6)! =#$5)6! #*)! /;! $/;)! L/+&! 3)#65*)3);+6! F*23! 2+&)*! ;)#*DI! *204! 8$#0/)*6! L/+&! 023%#*#D$)!$/+&2$28/)6B!
P6)!2F!+&/6! /;F2*3#+/2;!+28)+&)*!L/+&!+&)!;53)*/0!#8)6!3#4)6!/+!%266/D$)!+2!<)*/=)!+L2!3#/;!#0+/=/+I!%&#6)6Q!2;)!6+#*+)<!
622;!#F+)*! +&)!/0)! *)+*)#+!F2$$2L/;8!+&)!R25;8)*!:*I#6-!+&)!3#/;!#0+/=/+I!2005**)<!326+! $/4)$I!/;!+&)!)#*$I!G2$20);)! #;<!
$#6+)<!#%%*2?/3#+)$I!5;+/$!+&)!G2$20);)!0$/3#+)!2%+/353B!H&)!6)02;<!#0+/=/+I!%&#6)!02;+/;5)6!+2<#I!#;<!&#<!#;!5;0$)#*!
6+#*+!D)+L));!,S!+2!T!0#$!4I!'@B!
Keywords: "204!8$#0/)*6-!*)$#+/=)!#;<!;53)*/0#$!<#+/;8!+)0&;/J5)6-!62/$6-!32*#/;)6B!
INTRODUCTION
!"204!8$#0/)*6!#6!</6+/;0+!+2;85)N6&#%)<!$#;<F2*36!#*)!
%)*);;/#$$I! F*2U);! #;<! /0)N*/0&! <)D*/6! 2;! ;2;N8$#0/)*/6)<!
325;+#/;! 6$2%)6! 0*))%6! 6+)#</$I! 5;<)*! +&)! /;F$5);0)! 2F!
8*#=/+I! V,WB! O0+/=)! *204! 8$#0/)*6! X/B)B-! +&)I! 02;+#/;! /0)! #;<!
<)F2*3Y!#*)!65%%26)<!+2!&#=)!F2*3)<!#;<!)=2$=)<!<5*/;8!+&)!
G2$20);)! #;<! 0#;! D)! 6));! #6! +*#;6%2*+! 6I6+)36B! H&)I! 3#I!
D)#*! $2;8N+)*3! %#$#)20$/3#+/0! /;F2*3#+/2;!VEWB! ")$/0+!F2*36!
2;! $2L)*! #$+/+5<)6! &#=)! $26+! +&)/*! /0)! 02;+);+! #;<! <2! ;2+!
0*))%! #;I32*)B! O6! +&)I! /;/+/#$$I! 356+! &#=)! F2*3)<! 5;<)*!
%)*3#F*26+! 02;</+/2;6! #6! L)$$-! +&)I! &#=)! #! 02;6/<)*#D$)!
%2+);+/#$! F2*! 02;6+*#/;/;8! F2*3)*! 0$/3#+/0! 02;</+/2;6! VZWB!
H&56-! <#+/;8! 2F! 650&! $#;<F2*36! /6! *)$)=#;+! F2*! #;I! 4/;<! 2F!
%#$)20$/3#+/0!*)02;6+*50+/2;6!#;<!/;+)*%*)+#+/2;B!
!A/+&!+/3)-!+&)!65*F#0)!2F!*204!8$#0/)*6!/6!/;0*)#6/;8$I!
65D[)0+! +2! L)#+&)*/;8! %*20)66)6B! P65#$$I-! +&)! 2$<)*! +&)!
65*F#0)!2F!*204!<)D*/6!+&)!32*)!%*2;25;0)<!/6!+&)!/3%*/;+!2F!
L)#+&)*/;8B! ")$#+/=)! #;<! ;53)*/0! #8)! <#+/;8! DI! 3)#65*/;8!
+&)! L)#+&)*/;8! */;<! +&/04;)66! 2*! +&)! M0&3/<+N&#33)*!
*)D25;<!=#$5)!L#6!6500)66F5$$I!%)*F2*3)<!2;!32*#/;)6!#;<!
*204!8$#0/)*6!<)=)$2%)<!2;!6#;<6+2;)6!/;!\)L!])#$#;<!V^N_W-!
D#6#$+/0!#;<!#;<)6/+/0! D25$<)*6! /;!\2*+&!O3)*/0#!#;<!`#%#;!!
Va-! ,SW! #;<! 2;! 8*#;/+)6! #;<! 8;)/66! /;! +&)! O$%6! VE-! ,,WB!
A)#+&)*/;8! */;<6! &#=)! #$62! #! 0)*+#/;! %2+);+/#$! F2*! ;53)*/0!
<#+/;8!56/;8!/62+2%)6!V,EWB!
!
!
9O<<*)66! 02**)6%2;<);0)! +2! +&/6! #5+&2*! #+! +&)! :)%#*+3);+! 2F! b)28*#%&I-!
P;/=)*6/+I!2F!]5*/0&-!1GN_Scd!]5*/0&-!ML/+U)*$#;<e!H)$Q!f^,!XSY^^!TZc!c,!
,^gE,e!h#?Q!f^,!XSY^^!TZc!T_!^,e!7N3#/$Q!3#*456B)8$/i8)2B5U&B0&!
!:5*/;8!+&)!%#6+!<)0#<)6-!6)=)*#$!6+5</)6!&#=)!D));!
0#**/)<! 25+! +2! <)+)*3/;)! +&)! #8)! 2F! *204! 8$#0/)*6! /;! +&)!
75*2%)#;! O$%6! V,ZN,cWB! CjjD! et alB! V,TW! 56)<!
%&2+28*#33)+*/0! 3)+&2<6! +2!2D+#/;!F$2L!+*#[)0+2*/)6!#;<!+2!
)6+/3#+)! #8)6! 2F! *2048$#0/)*! 65*F#0)6B! G#)D)*$/! et alB! V,dW!
%*2%26)<! #! 35$+/%$)! #%%*2#0&! 56/;8! *)$#+/=)! #;<! ;53)*/0#$!
<#+/;8! +2! 2D+#/;! 32*)! 02;0$56/=)! /;F2*3#+/2;! 2;! *204N
8$#0/)*6!<I;#3/06B!O!k0*266N0&)04l!2F!+&)6)!3)+&2<6!#$$2L6!
#;! )?+);<)<! /;+)*%*)+#+/2;! #;<! *)0/%*20#$! 02;+*2$! 2F! +&)!
*)65$+6B!M50&!#;!#%%*2#0&!&#6!5;+/$!;2L!*#*)$I!D));!<2;)!F2*!
O$%/;)!8)232*%&/0!F)#+5*)6B!H&)!602%)!2F!+&)!%*)6);+!%#%)*!
/6-! +&)*)F2*)-! +2! +)6+! #;<! #%%$I! 6)=)*#$! <#+/;8! +)0&;/J5)6! F2*!
#66)66/;8!+&)!#8)!#;<!#0+/=/+I!%&#6)6!2F!6)=)*#$!*204!8$#0/)*6!
/;!#!&/8&!O$%/;)!*)8/2;!2F!+&)!ML/66!O$%6B!
STUDY AREA
!H&)!6+5<I!#*)#!/6!$20#+)<!/;!+&)!)#6+)*;!ML/66!O$%6!Xh/8B!
1YB! H&)! #*)#! 2F! +&)! O$D5$#! %#66! /6! 0&#*#0+)*/6)<! DI! 3#;I!
8$#0/#$! #;<!8)232*%&/0! F)#+5*)6!650&! #6! 32*#/;)6-!%2$/6&)<!
D)<*204!L/+&!*20&)6!325+2;;m)6-!60*))!6$2%)6-!*204!8$#0/)*6-!
+*#0)6!2F!8$#0/#$!)*26/2;!X650&!#6!8*22=)6-!6+*/#+/2;6-!)+0BY!#;<!
%$504/;8!%*20)66)6B!H)0+2;/0#$$I-!+&)!*)8/2;!625+&)*;!2F! +&)!
O$D5$#! %#66! /6! 6/+5#+)<! L/+&/;! +&)! 7**N')*;/;#! ;#%! +&#+!
D)$2;86! +2! +&)! $2L)*! O56+*2#$%/;)B! H&)! 8*));/6&! kO$D5$#!
b*#;/+)l!/6!+&)!<23/;#;+!*204!+I%)!V,_NESWB!H&)!#<[#0);+!#*)#!
+2! +&)! ;2*+&! 2F! +&)! O$D5$#! %#66! D)$2;86! +2! +&)! 7$#! ;#%-!
023%26)<! 3#/;$I! 2F! 6)</3);+#*I! *204! +I%)6! #;<! <);2+)6! #!
6&#*%! 02;+*#6+! +2! +&)! 7**N');/;#! ;#%B! H&)! 3)#;! #;;5#$!
%*)0/%/+#+/2;!/6!*#+&)*!$2L!L/+&!#*25;<!aSS!33!/;!+&)!$2L)*!
%#*+6!;)#*! @*)<#! #;<!5%! +2!,,SS! 33!+2L#*<6!+&)! 325;+#/;!

282 The Open Geography Journal, 2010, Volume 3 Böhlert et al.
!"#$%&' ()*+,' -.%' !%/01&2!3/2%#' 45&2' 675/"57' 859":3:'
;468<' "/%' &3!=5/%' $%0:%2!>' ?5&%#' 01' $75/"57@$%070$"/57'
:5AA"1$' &.0B&' 2.52' 2.%' 5!%5' B5&' &"2352%#' 1%5!' 2.%'
CD1$5#"1%E'"/%'#0:%'/37:"152"1$'"1'2.%'FAA%!'D1$5#"1%'())G'
)H+,' -!":7"1%' 51#' 02.%!' %!0&"0157' =%523!%&' "1#"/52%' 2.52'
#3!"1$'468'2.%'I7?375'A5&&'=0!:%#'5'2!51&=73%1/%'B"2.'"/%'
=70B"1$'=!0:'2.%'D1$5#"1%'"120'2.%'J."1%'!"K%!'&>&2%:'()L+,'
-.%' 452%$75/"57' =002A!"12' ;:0!5"1%' &%M3%1/%<' 10!2.' 20' 2.%'
!"#$%'N"O'#5'75&'P75"&'Q'R!5&25'80!5';S"$,'1<'B5&'=0!:%#'5&'5'
!%&372' 0=' 5' &70A%@$75/"52"01' ()T+U' 017>' 52' 2.%' B%&2%!1'
?031#5!>' 0=' 2.%' =0!:%!' $75/"%!' #"#' 5' #"&2"1/2' "/%@201$3%'
#%K%70AG'5&'"1#"/52%#'?>' :0!5"1%&,'-."&'=0!:%!'201$3%'5!%5'
"&' 20#5>' 0//3A"%#' ?>' 2.%' !%752"K%7>' 701$' !0/V' $75/"%!' I7K!5'
;!0/V' $75/"%!' DG' S"$,' 1<,' D9/%A2' =0!' 2.%' 2B0' /"!M3%&' 20' 2.%'
WX' 51#' WD' 0=' R!5&25' 80!5G' 2.%!%' 5!%' 10' &"$1&' =0!' 2.%'
%9"&2%1/%' 0=' $75/"%!' "/%' #3!"1$' 2.%' 4"227%' Y/%' I$%' ()TG' )Z+,'
S"$,' ;2<' $"K%&' 51' 0K%!K"%B' 0=' 2.%' /57/3752%#' :0#%!1'
A%!:5=!0&2' #"&2!"?32"01' ()[+,' -.%' A0&"2"01' 0=' 2.%' !0/V'
$75/"%!&'I'Q'\'"1'2.%'10!2.'%9A0&%#'&70A%&';&%%'57&0'S"$,'3<'"&'
/7%5!7>' "#%12"="5?7%' B"2."1' 2.%' /012"1303&' A%!:5=!0&2,' Y1' 2.%'
5!%5'0='2.%'!0/V'$75/"%!'D'017>'&0:%'&A0!5#"/'A%!:5=!0&2'/51'
?%'%9A%/2%#,'
'S"K%'!0/V'$75/"%!&'1%5!'2.%'I7?375'A5&&'B%!%'"1K%&2"$52%#'
;=0!'#%25"7&G'&%%'S"$&,'3-5<,'S03!'5!%'&2"77'5/2"K%G'5&'"1#"/52%#'
?>' 2.%' 75/V' 0=' K%$%252"01G' ;I' Q' \]' S"$&,' 3G' 4<' B.%!%5&' 2.%'
!0/V'$75/"%!'I7K!5';D<'"&'!%7"/2,'-.%'!0/V'$75/"%!'I7K!5'7"%&'52'
5' 70B%!' 572"23#%' 2.51' 2.%' 02.%!&' ;S"$,' 5<' 51#' 7"%&' ?%2B%%1'
)^L^'51#')H)^':'5&7'B"2.'5'B%&2'0!"%1252"01,'I77'02.%!'!0/V'
$75/"%!&'5!%'52'51'572"23#%'0='5?032')L^^'3A'20')[^^':'5&7'51#'
.5K%'10!2.@=5/"1$' %9A0&3!%&,' X."7%' 2.%' 5/2"K%'!0/V'$75/"%!&'
&.0B' 5' &":A7%' &2!3/23!%' B"2.' 5' /7%5!7>' "#%12"="5?7%' !002"1$'
O01%' 51#' 5' /0:A5/2' &2%%A' 201$3%G' 2.%' /01#"2"01&' "1' /5&%' 0='
2.%' !0/V' $75/"%!' I7K!5' 5!%' :0!%' /0:A7%9,' 6%0:%2!>' ;701$'
&.5A%<' 51#' 5' !52.%!' =752' &70A%' "1' 2.%' :"##7%' 51#' 3AA%!' A5!2'
;S"$,' 5<' &3$$%&2' 5' #%?!"&' &3AA7>' =!0:' &%K%!57' &2%%A' #%?!"&'
&03!/%&'B"2."1'2.%'&70A%&'2.52'5!%'31"="%#'"1'2.%'!0/V'$75/"%!'
I7K!5' ;"1#"/52%#' ?>' 5!!0B&' "1' S"$,' 5<,' R01&%M3%127>G' 5701$'
2.%' =70B' 7"1%' 0=' 2.%' !0/V' $75/"%!' I7K!5G' &%K%!57' &:577' !0/V'
$75/"%!&' 5!%' /!0&&%#' 51#' .%1/%' 5' B%77@#%K%70A%#' 5$%' 2!%1#'
/51102'?%'%9A%/2%#,'Y1'5##"2"01'20'2.%'"1K%&2"$52"01&'01'!0/V'
$75/"%!&G'2B0'&0"7'A!0="7%&'B%!%'&23#"%#';S"$,'6<,'_1%'0='2.%:'
"&'01'5':0!5"1%'5&&"$1%#'20'2.%'D$%&%1'$75/"57'&252%'()T+'51#'
/70&%' 20' 2.%' !%7"/2' !0/V' $75/"%!' ;&"2%U' `Y$7&' N751&a<' 51#' 2.%'
02.%!'01%'#"!%/27>'?%70B'51'5/2"K%'!0/V'$75/"%!';&"2%U'`N%"#!5'
80!5a<,'Y1'5##"2"01G'2B0'&5:A7%&'=0!'&3!=5/%'%9A0&3!%'#52"1$'
=!0:'5'!0/.%':032011b%';&"2%'`R!5A'I7Ka<'B%!%'5157>&%#'20'
#%!"K%' 5' :59":3:' 5$%' =0!' #%$75/"52"01' ;B."/.' :3&2' .5K%'
A!%/%#%#' !0/V' $75/"%!' =0!:52"01<' /70&%' 20' 2.%' !0/V' $75/"%!'
201$3%'51#'/01&%M3%127>'=0!'2.%'&25!2'0='!0/V'$75/"%!'5/2"K"2>,'
Y1'/70&%'K"/"1"2>G'A!%K"03&7>@!%A0!2%#'#525'0='5'A%52'?0$'B5&'
5K5"75?7%'()T+,'
'
'
'
Fig. (1).'40/52"01'0='2.%'"1K%&2"$52"01'&"2%,'

Rock Glacier Activity in a High Alpine Region The Open Geography Journal, 2010, Volume 3 283
MATERIALS AND METHODS
Schmidt-Hammer Rebound Values
The Schmidt-hammer is a portable instrument originally
developed to test concrete quality in a non-destructive way
[28]. A spring-loaded bolt impacting a surface yields a
rebound- or R-value, which is proportional to the hardness
(compressive strength) of a rock surface. Applied in
geomorphology, old rock surfaces exposed to weathering
processes for a long time provide low R-values and vice
versa. Since the 1980s the method has also been successfully
used for relative age dating of gemorphologic features such
as moraines [14, 29, 30], rock glaciers ([2, 31] or rockfall
deposits [32]. Recent publications increasingly discuss the
possibilities and limitations to calibrate R-values, for
instance with results from
10
Be and
14
C-analyses [33, 34] or
optically stimulated luminescence and photogrammetrical
measurements [2, 17].
In this study the N-type Schmidt-Hammer (Proceq,
Switzerland) was used. On each mapped unit (e.g. moraine,
rock glacier lobe) 50 randomly selected boulders/sites were
measured, avoiding edges of boulders [35], spots that
Fig. (2). Spatial distribution of local (sporadic) and continuous permafrost in the investigation area (data source: [27]).
Fig. (3). Aerial photo (with a view in southern direction) of the investigated rock glaciers A-D.

284 The Open Geography Journal, 2010, Volume 3 Böhlert et al.
showed lichen growth as well as visual fissures or cracks.
Only flat parts under dry conditions were considered. The
hardness of an analysed form is represented by the arithmetic
mean of the individual records. Following the suggestions by
[30], we used a standard error based on the standard
deviation in a 95% confidence interval to get statistically
significant hardness variations and by extensions age
differences:
x ± 1.96
/ n
()
(1)
where
x
is the arithmetic mean,
the standard deviation
and
n
corresponds to the number of measurements.
Fig. (4). Detailed view of the investigated rock glaciers A-D. The uppermost part of the relict rock is shown in E1 and the middle and lower
part in E2.

Citations
More filters
Journal ArticleDOI

Application of Schmidt hammer relative age dating to Late Pleistocene moraines and rock glaciers in the Western Tatra Mountains, Slovakia ☆

TL;DR: In this article, the Schmidt hammer technique was used as a relative age dating tool for Late Pleistocene glacial and periglacial deposits, and with this method, it was possible to differentiate between Late Glacial moraines and rock glacier systems of different ages.
Journal ArticleDOI

Rock glacier development in the Northern Calcareous Alps at the Pleistocene-Holocene boundary

TL;DR: In this article, a belt of relict rock glaciers in the Karwendel Mountains of the Northern Calcareous Austrian Alps was investigated and numerical dating of the glaciers was performed.
Journal ArticleDOI

Age constraints of rock glaciers in the Southern Alps/New Zealand - Exploring their palaeoclimatic potential

TL;DR: Two rock glaciers in the valley head of Irishman Stream in the central Ben Ohau Range, Southern Alps/New Zealand, have been investigated using the electronic Schmidt-hammer (SilverSchmidt).
Journal ArticleDOI

From valley to marginal glaciation in alpine-type relief: Lateglacial glacier advances in the Pięć Stawów Polskich/Roztoka Valley, High Tatra Mountains, Poland

TL;DR: The Piec Stawow Polskich-Roztoka valley in the Western Carpathians has been extensively studied in the context of glacial chronology as discussed by the authors.
Journal ArticleDOI

Tracking rockglacier evolution in the Eastern Alps from the Lateglacial to the early Holocene

TL;DR: In this paper, the authors provided a comprehensive dataset of 34 10Be exposure ages from boulders along two complex series of relict rockglaciers, called Tandl and Norbert rock glaciers (Carinthia, Austria).
References
More filters
Journal ArticleDOI

Formation rates of smectites derived from two Holocene chronosequences in the Swiss Alps

TL;DR: In this article, the formation rate of smectitic components in alpine soils is derived from two chronosequences in the Swiss Alps covering a time span of 11 500 years.
Journal ArticleDOI

The use of rock weathering-rind thickness to redate moraines in mount cook national park, new zealand

TL;DR: A revised moraine chronology is presented in this article, which describes fifteen episodes of glacier deposition related to stillstands and glacier expansion during the last 7500 yr. The events dated from about ca. 7200, 4200, 3790, 3350, 2940, 2540, 2160, 1830, 1490, 1150, 840, 580, 340, 135, and 100 yr ago.
Journal ArticleDOI

Relative surface age-dating of rock glacier systems near Hólar in Hjaltadalur, northern Iceland†

TL;DR: Schmidt-hammer rebound values and photogrammetric measurements of surface displacement were used to date two active polymorphic and two relict monomorphic (low-altitude) rock glaciers near Holar in Hjaltadalur, Trollaskagi peninsula, northern Iceland.
Journal ArticleDOI

Exposure dating and reinterpretation of coarse debris accumulations ('rock glaciers') in the Cairngorm Mountains, Scotland

TL;DR: In this paper, the authors investigated and date four proposed "rock glaciers" in the Cairngorm Mountains and showed that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice-rich sediment, and the possibility that all four represent unmodified runout accumulations cannot be discounted.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What have the authors contributed in "A combination of relative-numerical dating methods indicates two high alpine rock glacier activity phases after the glacier advance of the younger dryas" ?

In this study, the authors present Schmidt-hammer rebound value measurements and weathering rind thicknesses on four active and one relict rock glacier in the Albula area of the eastern Swiss Alps. Use of this information together with the numeric ages makes it possible to derive two main activity phases: one started soon after the ice retreat following the Younger Dryas, the main activity occurred most likely in the early Holocene and lasted approximately until the Holocene climate optimum.