scispace - formally typeset
Book ChapterDOI

A Common Molecular Switch for H 2 S to Regulate Multiple Protein Targets

TLDR
In this article, two main theories of hydrogen sulfide's working mechanism are discussed and compared, and the authors discuss which one is the more effective or direct mechanism for H2S and what is the relationship between them.
Abstract
Hydrogen sulfide, a small molecule, produced by endogenous enzymes, such as CTH, CBS, and MPST using L-cysteine as substrates, has been reported to have numerous protective effects. However, the key problem that the target of H2S and how it can affect the structure and activity of biological molecules is still unknown. Till now, there are two main theories of its working mechanism. One is that H2S can modify the free thiol in cysteine to produce the persulfide state of the thiol and the sulfhydration of cysteine can significantly change the structure and activity of target proteins. The other theory is that H2S, as an antioxidant molecule, can directly break the disulfide bond in target proteins, and the persulfide state of thiol can be an intermediate product during the reaction. Both phenomena exit for no doubt since they are both supported by large amounts of experiments. Here, we will summarize both theories and try to discuss which one is the more effective or direct mechanism for H2S and what is the relationship between them. Therefore, we will discover more protein targets of H2S with the mechanism and understand more about the effect of this small molecule.

read more

Citations
More filters
Journal ArticleDOI

H2S: A new gas with potential biotechnological applications in postharvest fruit and vegetable storage: An overview

TL;DR: In this article , a review mainly summarizes the biochemistry of hydrogen sulfide, and the latest information on the role of H2S in the senescence, disease resistance, and postharvest stages of fruits and vegetables, providing a theoretical basis for the application and popularization of h2S.
References
More filters
Journal ArticleDOI

The Protein Kinase Complement of the Human Genome

TL;DR: The protein kinase complement of the human genome is catalogued using public and proprietary genomic, complementary DNA, and expressed sequence tag sequences to provide a starting point for comprehensive analysis of protein phosphorylation in normal and disease states and a detailed view of the current state of human genome analysis through a focus on one large gene family.
Journal ArticleDOI

Cell signaling by receptor-tyrosine kinases

TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.
Journal ArticleDOI

The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener

TL;DR: It is demonstrated that H2S is an important endogenous vasoactive factor and the first identified gaseous opener of KATP channels in vascular SMCs and production from vascular tissues was enhanced by nitric oxide.
Journal ArticleDOI

Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed

TL;DR: The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrate, vertebrates, and finally to mammals, but over the centuries it had only been known for its toxicity and environmental hazard.
Journal ArticleDOI

An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor

TL;DR: It is found that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine in the activation loop, which suggests that the Kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation.