scispace - formally typeset
Open Access

A heat-stable polypeptide component of an ATP-Dependent Proteolytic System from reticullocytes

Aaron Ciechanover, +2 more
- Iss: 12, pp 27-33
TLDR
The degradation of denatured globin in reticulocyte lysates is markedly stimulated by ATP and this system has now been resolved into two components, designated fractions I and II, in the order of their elution from DEAE-cellulose.
Abstract
Abstract The degradation of denatured globin in reticulocyte lysates is markedly stimulated by ATP. This system has now been resolved into two components, designated fractions I and II, in the order of their elution from DEAE-cellulose. Fraction II has a neutral protease activity but is stimulated only slightly by ATP, whereas fraction I has no proteolytic activity but restores ATP-dependent proteolysis when combined with fraction II. The active principle of fraction I is remarkably heat-stable, but it is non-dialysable, precipitable with ammonium sulfate and it is destroyed by treatment with proteolytic enzymes. In gel filtration on Sephadex-G-75, it behaves as a single component with a molecular weight of approximately 9,000.

read more

Citations
More filters
Journal ArticleDOI

The Ubiquitin System

TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Journal ArticleDOI

Basic Medical Research Award. The ubiquitin system.

TL;DR: The ubiquitin system plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis as mentioned in this paper.
Journal ArticleDOI

The 26S Proteasome: A Molecular Machine Designed for Controlled Proteolysis

TL;DR: In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway, and the 26S proteasome is a 2-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation.
Journal ArticleDOI

Protein Analysis by Shotgun/Bottom-up Proteomics

TL;DR: The progress of proteomics has been driven by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling for quantification, and bioinformatics data analysis.
References
More filters
Journal Article

Protein Measurement with the Folin Phenol Reagent

TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.
Journal ArticleDOI

The Ubiquitin System

TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Journal ArticleDOI

Basic Medical Research Award. The ubiquitin system.

TL;DR: The ubiquitin system plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis as mentioned in this paper.
Journal ArticleDOI

The 26S Proteasome: A Molecular Machine Designed for Controlled Proteolysis

TL;DR: In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway, and the 26S proteasome is a 2-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation.
Journal ArticleDOI

Protein Analysis by Shotgun/Bottom-up Proteomics

TL;DR: The progress of proteomics has been driven by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling for quantification, and bioinformatics data analysis.