scispace - formally typeset
Journal ArticleDOI

A metamaterial for directive emission.

Stefan Enoch, +4 more
- 04 Nov 2002 - 
- Vol. 89, Iss: 21, pp 213902-213902
TLDR
It is shown that under proper conditions the energy radiated by a source embedded in a slab of metamaterial will be concentrated in a narrow cone in the surrounding media.
Abstract
In this paper we present the first results on emission in metamaterial. We show how the specific properties of metallic composite material can modify the emission of an embedded source. We show that under proper conditions the energy radiated by a source embedded in a slab of metamaterial will be concentrated in a narrow cone in the surrounding media. An experimental demonstration of this effect is given in the microwave domain, and the constructed antenna has a directivity equivalent to the best reported results with photonic-crystal-based antennas but using a completely different physical principle [B. Temelkuaran et al., J. Appl. Phys. 87, 603 (2000)].

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Three-dimensional optical metamaterial with a negative refractive index

TL;DR: Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.
Journal ArticleDOI

Coding metamaterials, digital metamaterials and programmable metamaterials

TL;DR: Digital metamaterials consisting of two kinds of unit cells whose different phase responses allow them to act as ‘0’ and ‘1’ bits are developed to enable controlled manipulation of electromagnetic waves.
Posted Content

Coding Metamaterials, Digital Metamaterials and Programming Metamaterials

TL;DR: In this paper, Wu et al. proposed a digital metamaterial with two kinds of unit cells with 0 and π phase responses, which they named as "0" and "1" elements.
Journal ArticleDOI

Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern

TL;DR: In this paper, the authors investigate the response of epsilon-near-zero metamaterials and plasmonic materials to electromagnetic source excitation and propose the use of these media for tailoring the phase of radiation pattern of arbitrary sources.
Journal ArticleDOI

Near-zero refractive index photonics

TL;DR: In this paper, the underlying principles and unique optical applications of structures exhibiting near-zero dielectric permittivity and/or magnetic permeability are reviewed, and the timely relevance to nonlinear, non-reciprocal and non-local effects is highlighted.
Related Papers (5)