scispace - formally typeset
Open AccessJournal ArticleDOI

A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution

Reads0
Chats0
TLDR
The proposed DD-Net method for sparse-view CT reconstruction achieved a competitive performance relative to the state-of-the-art methods in terms of streaking artifacts removal and structure preservation and can increase the structure similarity by up to 18% and reduce the root mean square error by up-to-42%.
Abstract
Sparse-view computed tomography (CT) holds great promise for speeding up data acquisition and reducing radiation dose in CT scans. Recent advances in reconstruction algorithms for sparse-view CT, such as iterative reconstruction algorithms, obtained high-quality image while requiring advanced computing power. Lately, deep learning (DL) has been widely used in various applications and has obtained many remarkable outcomes. In this paper, we propose a new method for sparse-view CT reconstruction based on the DL approach. The method can be divided into two steps. First, filter backprojection (FBP) was used to reconstruct the CT image from sparsely sampled sinogram. Then, the FBP results were fed to a DL neural network, which is a DenseNet and deconvolution-based network (DD-Net). The DD-Net combines the advantages of DenseNet and deconvolution and applies shortcut connections to concatenate DenseNet and deconvolution to accelerate the training speed of the network; all of those operations can greatly increase the depth of network while enhancing the expression ability of the network. After the training, the proposed DD-Net achieved a competitive performance relative to the state-of-the-art methods in terms of streaking artifacts removal and structure preservation. Compared with the other state-of-the-art reconstruction methods, the DD-Net method can increase the structure similarity by up to 18% and reduce the root mean square error by up to 42%. These results indicate that DD-Net has great potential for sparse-view CT image reconstruction.

read more

Citations
More filters
Journal ArticleDOI

Solving inverse problems using data-driven models

TL;DR: This survey paper aims to give an account of some of the main contributions in data-driven inverse problems.
Journal ArticleDOI

Image Reconstruction is a New Frontier of Machine Learning

TL;DR: This special issue focuses on data-driven tomographic reconstruction and covers the whole workflow of medical imaging: from tomographic raw data/features to reconstructed images and then extracted diagnostic features/readings.
Journal ArticleDOI

A gentle introduction to deep learning in medical image processing

TL;DR: A gentle introduction to deep learning in medical image processing is given, proceeding from theoretical foundations to applications, including general reasons for the popularity of deep learning, including several major breakthroughs in computer science.
Journal ArticleDOI

Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal

TL;DR: A modified convolutional neural network architecture termed fully dense UNet (FD-UNet) is proposed for removing artifacts from two-dimensional PAT images reconstructed from sparse data and the proposed CNN is compared with the standard UNet in terms of reconstructed image quality.
Journal ArticleDOI

DeepPET: A deep encoder–decoder network for directly solving the PET image reconstruction inverse problem

TL;DR: This study shows that an end‐to‐end encoder–decoder network can produce high quality PET images at a fraction of the time compared to conventional methods, and was successfully applied to real clinical data.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Related Papers (5)