scispace - formally typeset
Open AccessPosted Content

A Survey on Metric Learning for Feature Vectors and Structured Data

TLDR
A systematic review of the metric learning literature is proposed, highlighting the pros and cons of each approach and presenting a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning.
Abstract
The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.

read more

Citations
More filters
Posted Content

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

TL;DR: The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance.
Proceedings Article

Prototypical Networks for Few-shot Learning

TL;DR: Prototypical Networks as discussed by the authors learn a metric space in which classification can be performed by computing distances to prototype representations of each class, and achieve state-of-the-art results on the CU-Birds dataset.

Siamese Neural Networks for One-shot Image Recognition

TL;DR: A method for learning siamese neural networks which employ a unique structure to naturally rank similarity between inputs and is able to achieve strong results which exceed those of other deep learning models with near state-of-the-art performance on one-shot classification tasks.
Journal ArticleDOI

Multi-View Discriminant Analysis

TL;DR: This work proposes a Multi-view Discriminant Analysis (MvDA) approach, which seeks for a single discriminant common space for multiple views in a non-pairwise manner by jointly learning multiple view-specific linear transforms.
Proceedings ArticleDOI

Learning local feature descriptors with triplets and shallow convolutional neural networks.

TL;DR: This work proposes to utilize triplets of training samples, together with in-triplet mining of hard negatives, and shows that this method achieves state of the art results, without the computational overhead typically associated with mining of negatives and with lower complexity of the network architecture.
References
More filters
Journal ArticleDOI

Support-Vector Networks

TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Book

Convex Optimization

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Journal ArticleDOI

Greedy function approximation: A gradient boosting machine.

TL;DR: A general gradient descent boosting paradigm is developed for additive expansions based on any fitting criterion, and specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification.
Related Papers (5)