scispace - formally typeset
Journal ArticleDOI

A Variational Principle for Thermodynamical Waves

D. K. Bhattacharya
- 01 Jan 1982 - 
- Vol. 494, Iss: 5, pp 325-332
Reads0
Chats0
TLDR
In this article, the appropriate form of GYARMATI'S variational principle for thermodynamical waves is defined for the wave approach of Onsagerian thermodynamics, which leads to transport equations with finite propagation velocities, referred to as thermodynamic waves.
Abstract
When the dissipative processes are dominant in the system, the assumption of local equilibrium holds good and the space time evolution of irreversible system can be described by the variational principle of GYARMATI. However when imposed changes in the state variables are fast, the system can not be in a state of local equilibrium and to define the nonequilibrium state of the system it is necessary to extend the formalism of classical irreversible thermodynamics. The wave approach of Onsagerian thermodynamics is one such pursuit and is a direct generalization of the original Onsager-Machlup proposition. An important consequence of this theory is that it leads to transport equations with finite propagation velocities, which are referred to as thermodynamical waves. In this note we endeavour to write the appropriate form of GYARMATI'S variational principle for thermodynamical waves. Ein Variationsprinzip thermodynamischer Wellen Falls die dissipativen Vorgange im System uberwiegend sind und ein lokales Gleichgewicht angenommen werden darf, so kann die Raumzeitevolution irreversibler Systeme mit Hilfe des Gyarmatischen Variationsprinzips angegeben werden. Falls aber die Anderungen in den Zustandvariablen sehr rasch erfolgen, kann das System nicht im Zustand eines lokalen Gleichgewichtes sein, und um den Nichtgleichgewichtszustand eines Systems zu bearbeiten mus der Formalismus der klassischen irreversiblen Thermodynamik erweitert werden. Die Wellenapproximation der Onsagerschen Thermodynamik ist eine solche Erweiterung und eine direkte Verallgemeinerung der ursprunglichen Onsager-Machlupschen Theorie. Eine wichtige Konsequenz dieser Theorie besteht darin, das sie zu Transportgleichungen mit sogenannten thermodynamischen Wellen fuhrt. In diesem Artikel bemuhen wir uns, die geeignete Form des Gyarmatischen Variationsprinzips thermodynamischer Wellen zu beschreiben.

read more

Citations
More filters
Book

Extended irreversible thermodynamics

TL;DR: In this paper, the authors propose a theory which goes beyond the classical formulation of thermodynamics by enlarging the space of basic independent variables, through the introduction of non-equilibrium variables, such as the dissipative fluxes appearing in the balance equations.
Journal ArticleDOI

Deduction of the Guldberg–Waage mass action law from Gyarmati’s governing principle of dissipative processes

TL;DR: In this article, it was shown that the Gyarmati-Li generalized reciprocal relations are satisfied in chemical kinetic systems of elementary reactions in continuous media provided that the rates of all forward and reverse reactions are considered as the complete set of independent fluxes together with the De Donder forward-and reverse affinities of stoichiometrically independent reactions as forces.
Journal ArticleDOI

Gyarmati’s Variational Principle of Dissipative Processes

TL;DR: The consistent application of both the local and the global forms of Gyarmati’s principle provides all the advantages throughout explicating the theory of irreversible thermodynamics in the study of mechanics and electrodynamics.
Journal ArticleDOI

On the Relationship Between Extended Thermodynamics and the Wave Approach to Thermodynamics

TL;DR: De Gruyter et al. as mentioned in this paper compare the Onsager-Machlup linear theory and the wave approach to thermodynamics (WAT) introduced by Gyarmati and reveal the difference, scope and limitations of each theory.
References
More filters
Journal ArticleDOI

Handbuch der Physik

M. De
Journal ArticleDOI

Zum Paradoxon der Warmeleitungstheorie

TL;DR: In this paper, it was shown that the paradox of Fourier's heat conduction theory (propagation of temperature disturbances with infinite velocity) is a consequence of an insufficient description of the thermodynamical state in nonequilibrium.