scispace - formally typeset
Journal ArticleDOI

A Voltage-Boosting Strategy Enabling a Low-Frequency, Flexible Electromagnetic Wave Absorption Device.

TLDR
The method of utilizing an external voltage to break the intrinsic dielectric feature by modifying a traditional electronic absorption device is demonstrated for the first time and has great significance in solving the low-frequency electromagnetic interference issue.
Abstract
Nowadays, low-frequency electromagnetic interference (<2.0 GHz) remains a key core issue that plagues the effective attenuation performance of conventional absorption devices prepared via the component-morphology method (Strategy I). According to theoretical calculations, one fundamental solution is to develop a material that possesses a high e' but lower e″. Thus, it is attempted to control the dielectric values via applying an external electrical field, which inducts changes in the macrostructure toward a performance improvement (Strategy II). A sandwich-structured flexible electronic absorption device is designed using a carbon film electrode to conduct an external current. Simultaneously, an absorption layer that is highly responsive to an external voltage is selected via Strategy I. Relying on the synergistic effects from Strategies I and II, this device demonstrates an absorption value of more than 85% at 1.5-2.0 GHz with an applied voltage of 16 V while reducing the thickness to ≈5 mm. In addition, the device also shows a good absorption property at 25-150 °C. The method of utilizing an external voltage to break the intrinsic dielectric feature by modifying a traditional electronic absorption device is demonstrated for the first time and has great significance in solving the low-frequency electromagnetic interference issue.

read more

Citations
More filters
Journal ArticleDOI

2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding

TL;DR: In this article, the state-of-the-art in electromagnetic wave absorbing and shielding of MXene-based matrials is evaluated and dissected, highlighting the major problems and bottlenecks.
References
More filters
Journal ArticleDOI

Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes

TL;DR: In this paper, the absorption properties of CNT/crystalline Fe nanocomposites have been investigated and it was shown that the absorption property is due to the confinement of crystalline Fe in carbon nanoshells, deriving mainly from magnetic rather than electric effects.
Journal ArticleDOI

Broadband and Tunable High‐Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam

TL;DR: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated and it is shown that via physical compression, the microwave absorption performance can be tuned.
Journal ArticleDOI

CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption

TL;DR: Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz.
Journal ArticleDOI

Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium‐Ion Batteries

TL;DR: Ultrafine SnS/SnO2 heterostructures were successfully fabricated and showed enhanced charge-transfer capability and the mobility enhancement is attributed to the interface effect of heterostructure, which induces an electric field within the nanocrystals, giving them much lower ion-diffusion resistance and facilitating interfacial electron transport.
Journal ArticleDOI

Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties

TL;DR: In this paper, a hierarchical reduced graphene oxide (RGO) foams decorated with in-situ grown ZnO nanowires (ZnO nws ) were realized by a direct freeze-drying and hydrothermal process.
Related Papers (5)