scispace - formally typeset
Search or ask a question
Book ChapterDOI

Adaptive Infrared Images Enhancement Using Fuzzy-Based Concepts

01 Jan 2018-pp 119-128
TL;DR: This proposal aims to enhance infrared images, making use of the fuzzy-based enhancement technique (FBE), and to compare its efficacy with other techniques such as histogram equalization (HE), adaptive histogramequalization (AHE), max–median filter, and multi-scale top-hat transform.
Abstract: Image enhancement is the process of modifying digital images so that results are suitable for human perception. An upcoming need for image visualization during all lighting conditions by the use of infrared (IR) imagery has gained momentum. It is deemed fit for efficient target acquisition and object deduction. However, due to low image resolution and difficulty in spotting certain objects whose temperature is similar to that of the ground, infrared images must be subjected to further enhancement. Our given proposal aims to enhance infrared images, making use of the fuzzy-based enhancement technique (FBE), and to compare its efficacy with other techniques such as histogram equalization (HE), adaptive histogram equalization (AHE), max–median filter, and multi-scale top-hat transform. The enhanced image is then analyzed using different quantitative metrics such as peak signal-to-noise ratio (PSNR), image quality index (IQI), and structural similarity (SSIM) for performance evaluation. From experimental results, it is concluded that FBE results in the best quality image.
Citations
More filters
Journal ArticleDOI
Jianjun Wang1, Yi Li1, Lihua Cao1, Yan Li1, Ning Li1, HuiBin Gao1 
TL;DR: In this paper, a 2D difference information between two adjacent pixels is introduced for infrared image histogram calculation and its calculation is achieved by a reasonable difference threshold. And to preserve detail edges, the adaptive plateau HE on 2D Difference Information-related histogram.
Abstract: Histogram equalization (HE)-based technology has been widely applied in infrared image contrast enhancement due to its effectiveness and simple implementation. However, HE and its variations considered the accumulation of pixels in different gray values, thus ordinarily result in artifact effects, over-enhancement and noise amplification, especially in the uniformity region. In this paper, we redefine and formulate a new HE technology to overcome the shortcomings of traditional HE technology. 2D difference information between two adjacent pixels is introduced for infrared image histogram calculation and its calculation is achieved by a reasonable difference threshold. With the purpose of adaptability to different scenes, the display range of output image is controlled by 2D difference information. To preserve detail edges, we apply adaptive plateau HE on 2D difference information-related histogram. Experiments and results show that the proposed algorithm has better scene adaptability and outperforms other compared algorithms by enhancing the contrast without introducing over-enhancement effect.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors proposed a security-aware information transfer in the cloud based on the blowfish algorithm (BFA) to address the issue of unauthorized access to information data security architecture.
Abstract: Because of its on-demand servicing and scalability features in cloud computing, security and confidentiality have converted to key concerns. Maintaining transaction information on third-party servers carries significant dangers so that malicious individuals trying for illegal access to information data security architecture. This research proposes a security-aware information transfer in the cloud-based on the blowfish algorithm (BFA) to address the issue. The user is verified initially with the identification and separate the imported data using pattern matching technique. Further, BFA is utilised to encrypt and save the data in cloud. This can safeguard the data and streamline the proof so that client cannot retrieve the information without identification which makes the environment secure. The suggested approach's performance is evaluated using several metrics, including encryption time, decryption time, memory utilisation, and runtime. Compared to the existing methodology, the investigational findings clearly show that the method takes the least time to data encryption.
References
More filters
Journal ArticleDOI
TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

40,609 citations

Book
11 Feb 1984
TL;DR: This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.
Abstract: Image Processing and Mathematical Morphology-Frank Y. Shih 2009-03-23 In the development of digital multimedia, the importance and impact of image processing and mathematical morphology are well documented in areas ranging from automated vision detection and inspection to object recognition, image analysis and pattern recognition. Those working in these ever-evolving fields require a solid grasp of basic fundamentals, theory, and related applications—and few books can provide the unique tools for learning contained in this text. Image Processing and Mathematical Morphology: Fundamentals and Applications is a comprehensive, wide-ranging overview of morphological mechanisms and techniques and their relation to image processing. More than merely a tutorial on vital technical information, the book places this knowledge into a theoretical framework. This helps readers analyze key principles and architectures and then use the author’s novel ideas on implementation of advanced algorithms to formulate a practical and detailed plan to develop and foster their own ideas. The book: Presents the history and state-of-the-art techniques related to image morphological processing, with numerous practical examples Gives readers a clear tutorial on complex technology and other tools that rely on their intuition for a clear understanding of the subject Includes an updated bibliography and useful graphs and illustrations Examines several new algorithms in great detail so that readers can adapt them to derive their own solution approaches This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.

9,566 citations

Journal ArticleDOI
TL;DR: Although the new index is mathematically defined and no human visual system model is explicitly employed, experiments on various image distortion types indicate that it performs significantly better than the widely used distortion metric mean squared error.
Abstract: We propose a new universal objective image quality index, which is easy to calculate and applicable to various image processing applications. Instead of using traditional error summation methods, the proposed index is designed by modeling any image distortion as a combination of three factors: loss of correlation, luminance distortion, and contrast distortion. Although the new index is mathematically defined and no human visual system model is explicitly employed, our experiments on various image distortion types indicate that it performs significantly better than the widely used distortion metric mean squared error. Demonstrative images and an efficient MATLAB implementation of the algorithm are available online at http://anchovy.ece.utexas.edu//spl sim/zwang/research/quality_index/demo.html.

5,285 citations

Journal ArticleDOI
TL;DR: It is concluded that clipped ahe should become a method of choice in medical imaging and probably also in other areas of digital imaging, and that clip ahe can be made adequately fast to be routinely applied in the normal display sequence.
Abstract: Adaptive histogram equalization (ahe) is a contrast enhancement method designed to be broadly applicable and having demonstrated effectiveness. However, slow speed and the overenhancement of noise it produces in relatively homogeneous regions are two problems. We report algorithms designed to overcome these and other concerns. These algorithms include interpolated ahe, to speed up the method on general purpose computers; a version of interpolated ahe designed to run in a few seconds on feedback processors; a version of full ahe designed to run in under one second on custom VLSI hardware; weighted ahe, designed to improve the quality of the result by emphasizing pixels' contribution to the histogram in relation to their nearness to the result pixel; and clipped ahe, designed to overcome the problem of overenhancement of noise contrast. We conclude that clipped ahe should become a method of choice in medical imaging and probably also in other areas of digital imaging, and that clipped ahe can be made adequately fast to be routinely applied in the normal display sequence.

3,041 citations

Book
01 Jan 1996
TL;DR: The author explains the development of the Huffman Coding Algorithm and some of the techniques used in its implementation, as well as some of its applications, including Image Compression, which is based on the JBIG standard.
Abstract: Preface 1 Introduction 1.1 Compression Techniques 1.1.1 Lossless Compression 1.1.2 Lossy Compression 1.1.3 Measures of Performance 1.2 Modeling and Coding 1.3 Organization of This Book 1.4 Summary 1.5 Projects and Problems 2 Mathematical Preliminaries 2.1 Overview 2.2 A Brief Introduction to Information Theory 2.3 Models 2.3.1 Physical Models 2.3.2 Probability Models 2.3.3. Markov Models 2.3.4 Summary 2.5 Projects and Problems 3 Huffman Coding 3.1 Overview 3.2 "Good" Codes 3.3. The Huffman Coding Algorithm 3.3.1 Minimum Variance Huffman Codes 3.3.2 Length of Huffman Codes 3.3.3 Extended Huffman Codes 3.4 Nonbinary Huffman Codes 3.5 Adaptive Huffman Coding 3.5.1 Update Procedure 3.5.2 Encoding Procedure 3.5.3 Decoding Procedure 3.6 Applications of Huffman Coding 3.6.1 Lossless Image Compression 3.6.2 Text Compression 3.6.3 Audio Compression 3.7 Summary 3.8 Projects and Problems 4 Arithmetic Coding 4.1 Overview 4.2 Introduction 4.3 Coding a Sequence 4.3.1 Generating a Tag 4.3.2 Deciphering the Tag 4.4 Generating a Binary Code 4.4.1 Uniqueness and Efficiency of the Arithmetic Code 4.4.2 Algorithm Implementation 4.4.3 Integer Implementation 4.5 Comparison of Huffman and Arithmetic Coding 4.6 Applications 4.6.1 Bi-Level Image Compression-The JBIG Standard 4.6.2 Image Compression 4.7 Summary 4.8 Projects and Problems 5 Dictionary Techniques 5.1 Overview 5.2 Introduction 5.3 Static Dictionary 5.3.1 Diagram Coding 5.4 Adaptive Dictionary 5.4.1 The LZ77 Approach 5.4.2 The LZ78 Approach 5.5 Applications 5.5.1 File Compression-UNIX COMPRESS 5.5.2 Image Compression-the Graphics Interchange Format (GIF) 5.5.3 Compression over Modems-V.42 bis 5.6 Summary 5.7 Projects and Problems 6 Lossless Image Compression 6.1 Overview 6.2 Introduction 6.3 Facsimile Encoding 6.3.1 Run-Length Coding 6.3.2 CCITT Group 3 and 4-Recommendations T.4 and T.6 6.3.3 Comparison of MH, MR, MMR, and JBIG 6.4 Progressive Image Transmission 6.5 Other Image Compression Approaches 6.5.1 Linear Prediction Models 6.5.2 Context Models 6.5.3 Multiresolution Models 6.5.4 Modeling Prediction Errors 6.6 Summary 6.7 Projects and Problems 7 Mathematical Preliminaries 7.1 Overview 7.2 Introduction 7.3 Distortion Criteria 7.3.1 The Human Visual System 7.3.2 Auditory Perception 7.4 Information Theory Revisted 7.4.1 Conditional Entropy 7.4.2 Average Mutual Information 7.4.3 Differential Entropy 7.5 Rate Distortion Theory 7.6 Models 7.6.1 Probability Models 7.6.2 Linear System Models 7.6.3 Physical Models 7.7 Summary 7.8 Projects and Problems 8 Scalar Quantization 8.1 Overview 8.2 Introduction 8.3 The Quantization Problem 8.4 Uniform Quantizer 8.5 Adaptive Quantization 8.5.1 Forward Adaptive Quantization 8.5.2 Backward Adaptive Quantization 8.6 Nonuniform Quantization 8.6.1 pdf-Optimized Quantization 8.6.2 Companded Quantization 8.7 Entropy-Coded Quantization 8.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs 8.7.2 Entropy-Constrained Quantization 8.7.3 High-Rate Optimum Quantization 8.8 Summary 8.9 Projects and Problems 9 Vector Quantization 9.1 Overview 9.2 Introduction 9.3 Advantages of Vector Quantization over Scalar Quantization 9.4 The Linde-Buzo-Gray Algorithm 9.4.1 Initializing the LBG Algorithm 9.4.2 The Empty Cell Problem 9.4.3 Use of LBG for Image Compression 9.5 Tree-Structured Vector Quantizers 9.5.1 Design of Tree-Structured Vector Quantizers 9.6 Structured Vector Quantizers 9.6.1 Pyramid Vector Quantization 9.6.2 Polar and Spherical Vector Quantizers 9.6.3 Lattice Vector Quantizers 9.7 Variations on the Theme 9.7.1 Gain-Shape Vector Quantization 9.7.2 Mean-Removed Vector Quantization 9.7.3 Classified Vector Quantization 9.7.4 Multistage Vector Quantization 9.7.5 Adaptive Vector Quantization 9.8 Summary 9.9 Projects and Problems 10 Differential Encoding 10.1 Overview 10.2 Introduction 10.3 The Basic Algorithm 10.4 Prediction in DPCM 10.5 Adaptive DPCM (ADPCM) 10.5.1 Adaptive Quantization in DPCM 10.5.2 Adaptive Prediction in DPCM 10.6 Delta Modulation 10.6.1 Constant Factor Adaptive Delta Modulation (CFDM) 10.6.2 Continuously Variable Slope Delta Modulation 10.7 Speech Coding 10.7.1 G.726 10.8 Summary 10.9 Projects and Problems 11 Subband Coding 11.1 Overview 11.2 Introduction 11.3 The Frequency Domain and Filtering 11.3.1 Filters 11.4 The Basic Subband Coding Algorithm 11.4.1 Bit Allocation 11.5 Application to Speech Coding-G.722 11.6 Application to Audio Coding-MPEG Audio 11.7 Application to Image Compression 11.7.1 Decomposing an Image 11.7.2 Coding the Subbands 11.8 Wavelets 11.8.1 Families of Wavelets 11.8.2 Wavelets and Image Compression 11.9 Summary 11.10 Projects and Problems 12 Transform Coding 12.1 Overview 12.2 Introduction 12.3 The Transform 12.4 Transforms of Interest 12.4.1 Karhunen-Loeve Transform 12.4.2 Discrete Cosine Transform 12.4.3 Discrete Sine Transform 12.4.4 Discrete Walsh-Hadamard Transform 12.5 Quantization and Coding of Transform Coefficients 12.6 Application to Image Compression-JPEG 12.6.1 The Transform 12.6.2 Quantization 12.6.3 Coding 12.7 Application to Audio Compression 12.8 Summary 12.9 Projects and Problems 13 Analysis/Synthesis Schemes 13.1 Overview 13.2 Introduction 13.3 Speech Compression 13.3.1 The Channel Vocoder 13.3.2 The Linear Predictive Coder (Gov.Std.LPC-10) 13.3.3 Code Excited Linear Prediction (CELP) 13.3.4 Sinusoidal Coders 13.4 Image Compression 13.4.1 Fractal Compression 13.5 Summary 13.6 Projects and Problems 14 Video Compression 14.1 Overview 14.2 Introduction 14.3 Motion Compensation 14.4 Video Signal Representation 14.5 Algorithms for Videoconferencing and Videophones 14.5.1 ITU_T Recommendation H.261 14.5.2 Model-Based Coding 14.6 Asymmetric Applications 14.6.1 The MPEG Video Standard 14.7 Packet Video 14.7.1 ATM Networks 14.7.2 Compression Issues in ATM Networks 14.7.3 Compression Algorithms for Packet Video 14.8 Summary 14.9 Projects and Problems A Probability and Random Processes A.1 Probability A.2 Random Variables A.3 Distribution Functions A.4 Expectation A.5 Types of Distribution A.6 Stochastic Process A.7 Projects and Problems B A Brief Review of Matrix Concepts B.1 A Matrix B.2 Matrix Operations C Codes for Facsimile Encoding D The Root Lattices Bibliography Index

2,311 citations