scispace - formally typeset
Journal ArticleDOI

Aerodynamic forces of revolving hummingbird wings and wing models

TLDR
At Re= 5000, high values of the lift:drag ratio (8–16 at low angles of attack suggest that wings of hummingbirds are exceptionally good at producing lift.
Abstract
A central challenge to the study of animal aerodynamics has been the measurement of forces generated by flapping wings. Relative to wings of other birds, hummingbird wings are of particular interest in that the smaller species operate in more viscous regimes (5000 < Re < 10 000) for which substantial drag and reduced lift:drag coefficients might be expected. Lift and drag forces were measured on mounted hummingbird wings and wing models spinning in continuous tipwise revolution about the wing base. Lift coefficients tended to increase as wing models became more realistic (i.e. with sharpened leading edges and with substantial camber). Lift:drag ratios of real wings were substantially higher than those of wing models, suggesting morphological contributions of feathers to lift enhancement and drag reduction. At Re= 5000, high values of the lift:drag ratio (8–16) at low angles of attack suggest that wings of hummingbirds are exceptionally good at producing lift.

read more

Citations
More filters
Journal ArticleDOI

Recent progress in flapping wing aerodynamics and aeroelasticity

TL;DR: In this article, a review of the recent progress in flapping wing aerodynamics and aeroelasticity is presented, where it is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation.
Journal ArticleDOI

Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion

TL;DR: A phylogenetic (cladistic) analysis of 150 taxa of Neornithes, including exemplars from all non-passeriform families, and subordinal representatives of Passeriformes, confirmed the topology among outgroup Theropoda and achieved robust resolution at virtually all levels of the NeornIthes.
Journal ArticleDOI

Rotational accelerations stabilize leading edge vortices on revolving fly wings

TL;DR: The analysis and experiments suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100
Journal ArticleDOI

Aerodynamics of the hovering hummingbird

TL;DR: Measurements of the wake of hovering rufous hummingbirds obtained with digital particle image velocimetry show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke, suggesting they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering.
Journal ArticleDOI

Unsteady force generation and vortex dynamics of pitching and plunging aerofoils

TL;DR: In this paper, the effects of varying frequency and plunge amplitude for the same effective angle-of-attack time history are considered, and it is shown that for constant effective angle of attack, flow evolution is independent of Strouhal number, and as the reduced frequency is increased the leading edge vortex separates later in phase during the downstroke.
References
More filters
Journal ArticleDOI

Wing rotation and the aerodynamic basis of insect flight.

TL;DR: In this paper, the authors show that the enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture.

Wing rotation and the aerodynamic basis of insect flight

TL;DR: A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.
Journal ArticleDOI

Leading-edge vortices in insect flight

TL;DR: In this article, the authors visualized the airflow around the wings of the hawkmoth Manduca sexta and a 'hovering' large mechanical model, and found an intense leading-edge vortex was found on the downstroke, of sufficient strength to explain the high-lift forces.
Journal ArticleDOI

Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production

TL;DR: In this article, the average lift coefficient, Reynolds number, the aerodynamic power, the moment of inertia of the wing mass and the dynamic efficiency in animals which perform normal hovering with horizontally beating wings are derived.
Journal ArticleDOI

The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.

TL;DR: A standard quasi-steady model of insect flight is modified to include rotational forces, translational forces and the added mass inertia, and the revised model predicts the time course of force generation for several different patterns of flapping kinematics more accurately than a model based solely on translational force coefficients.
Related Papers (5)