scispace - formally typeset
Journal ArticleDOI

An affine scaling methodology for best basis selection

Reads0
Chats0
TLDR
A methodology is developed to derive algorithms for optimal basis selection by minimizing diversity measures proposed by Wickerhauser (1994) and Donoho (1994), which include the p-norm-like (l/sub (p/spl les/1)/) diversity measures and the Gaussian and Shannon entropies.
Abstract
A methodology is developed to derive algorithms for optimal basis selection by minimizing diversity measures proposed by Wickerhauser (1994) and Donoho (1994). These measures include the p-norm-like (l/sub (p/spl les/1)/) diversity measures and the Gaussian and Shannon entropies. The algorithm development methodology uses a factored representation for the gradient and involves successive relaxation of the Lagrangian necessary condition. This yields algorithms that are intimately related to the affine scaling transformation (AST) based methods commonly employed by the interior point approach to nonlinear optimization. The algorithms minimizing the (l/sub (p/spl les/1)/) diversity measures are equivalent to a previously developed class of algorithms called focal underdetermined system solver (FOCUSS). The general nature of the methodology provides a systematic approach for deriving this class of algorithms and a natural mechanism for extending them. It also facilitates a better understanding of the convergence behavior and a strengthening of the convergence results. The Gaussian entropy minimization algorithm is shown to be equivalent to a well-behaved p=0 norm-like optimization algorithm. Computer experiments demonstrate that the p-norm-like and the Gaussian entropy algorithms perform well, converging to sparse solutions. The Shannon entropy algorithm produces solutions that are concentrated but are shown to not converge to a fully sparse solution.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

$rm K$ -SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

TL;DR: A novel algorithm for adapting dictionaries in order to achieve sparse signal representations, the K-SVD algorithm, an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data.
Journal ArticleDOI

Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit

TL;DR: It is demonstrated theoretically and empirically that a greedy algorithm called orthogonal matching pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal.

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Journal ArticleDOI

From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images

TL;DR: The aim of this paper is to introduce a few key notions and applications connected to sparsity, targeting newcomers interested in either the mathematical aspects of this area or its applications.
Journal ArticleDOI

A sparse signal reconstruction perspective for source localization with sensor arrays

TL;DR: This work presents a source localization method based on a sparse representation of sensor measurements with an overcomplete basis composed of samples from the array manifold that has a number of advantages over other source localization techniques, including increased resolution, improved robustness to noise, limitations in data quantity, and correlation of the sources.
References
More filters
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Book

Ten lectures on wavelets

TL;DR: This paper presents a meta-analyses of the wavelet transforms of Coxeter’s inequality and its applications to multiresolutional analysis and orthonormal bases.
Journal ArticleDOI

Ten Lectures on Wavelets

TL;DR: In this article, the regularity of compactly supported wavelets and symmetry of wavelet bases are discussed. But the authors focus on the orthonormal bases of wavelets, rather than the continuous wavelet transform.
Journal ArticleDOI

Atomic Decomposition by Basis Pursuit

TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Journal ArticleDOI

Matching pursuits with time-frequency dictionaries

TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Related Papers (5)