scispace - formally typeset
Book ChapterDOI

An Asynchronous Distributed Algorithm for Power Control in Cellular Radio Systems

Debasis Mitra
- pp 177-186
TLDR
An asynchronous adaptive algorithm for power control in cellular radio systems, which relaxes the demands of coordination and synchrony between the various mobiles and base stations and allows different links to update their power at different rates; unpredictable, bounded propagation delays are taken into account.
Abstract
We give an asynchronous adaptive algorithm for power control in cellular radio systems, which relaxes the demands of coordination and synchrony between the various mobiles and base stations. It relaxes the need for strict clock synchronization and also allows different links to update their power at different rates; unpredictable, bounded propagation delays are taken into account. The algorithm uses only local measurements and incorporates receiver noise. The overall objective is to minimize transmitters’ powers in a Pareto sense while giving each link a Carrier-to-Interference ratio which is not below a prefixed target. The condition for the existence and uniqueness of such a power distribution is obtained. Conditions are obtained for the asynchronous adaptation to converge to the optimal solution at a geometric rate. These conditions are surprisingly not burdensome.

read more

Citations
More filters
Journal ArticleDOI

A framework for uplink power control in cellular radio systems

TL;DR: It is shown that systems in which transmitter powers are subject to maximum power limitations share these common properties, which permit a general proof of the synchronous and totally asynchronous convergence of the iteration p(t+1)=I(p(t)) to a unique fixed point at which total transmitted power is minimized.
Journal ArticleDOI

Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey

TL;DR: This article provides a detailed discussion on reuse partitioning schemes, the effect of handoffs, and prioritization schemes, and other important issues in resource allocation such as overlay cells, frequency planning, and power control.
Journal ArticleDOI

Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities

TL;DR: This work focuses on the multiaccess fading channel with Gaussian noise, and defines two notions of capacity depending on whether the traffic is delay-sensitive or not, and characterize the throughput capacity region which contains the long-term achievable rates through the time-varying channel.
Journal ArticleDOI

Power Control By Geometric Programming

TL;DR: This work presents a systematic method of distributed algorithms for power control that is geometric-programming-based and shows that in the high Signal-to- interference Ratios (SIR) regime, these nonlinear and apparently difficult, nonconvex optimization problems can be transformed into convex optimized problems in the form of geometric programming.
Journal ArticleDOI

Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey

TL;DR: In this article, the authors provide a detailed discussion of wireless resource and channel allocation schemes and compare their trade-offs in terms of complexity and performance, and discuss other important issues in resource allocation such as overlay cells, frequency planning, and power control.
References
More filters
Book

The Theory of Matrices

TL;DR: In this article, the Routh-Hurwitz problem of singular pencils of matrices has been studied in the context of systems of linear differential equations with variable coefficients, and its applications to the analysis of complex matrices have been discussed.
Journal ArticleDOI

A simple distributed autonomous power control algorithm and its convergence

TL;DR: For wireless cellular communication systems, one seeks a simple effective means of power control of signals associated with randomly dispersed users that are reusing a single channel in different cells, and the authors demonstrate exponentially fast convergence to these settings whenever power settings exist for which all users meet the rho requirement.
Journal ArticleDOI

Performance of optimum transmitter power control in cellular radio systems

TL;DR: In order to derive upper performance bounds for transmitter power control schemes, algorithms that are optimum in the sense that the interference probability is minimized are suggested.
Journal ArticleDOI

Distributed cochannel interference control in cellular radio systems

TL;DR: An algorithm that successfully approximates the behavior of the best known algorithms is proposed, which involves a novel distributed C/I-balancing scheme and shows that the balancing procedure is very robust to measurement noise.
Related Papers (5)