scispace - formally typeset
Open AccessJournal ArticleDOI

An electromechanical Ising Hamiltonian

TLDR
These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling.
Abstract
Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling.

read more

Citations
More filters
Journal ArticleDOI

A coherent Ising machine for 2000-node optimization problems.

TL;DR: It is shown that an optical processing approach based on a network of coupled optical pulses in a ring fiber can be used to model and optimize large-scale Ising systems, and a coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
Journal ArticleDOI

Intrinsic optimization using stochastic nanomagnets

TL;DR: In this article, the authors present a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state.
Journal ArticleDOI

Large-Scale Photonic Ising Machine by Spatial Light Modulation.

TL;DR: In this article, a large-scale optical Ising machine with a spatial light modulator was designed and experimentally demonstrated, where the spin variables were encoded in a binary phase modulation of the field and the light propagation can be tailored to minimize an Ising Hamiltonian.
Journal ArticleDOI

Intrinsic optimization using stochastic nanomagnets

TL;DR: A hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state is drawn attention.
Book ChapterDOI

OIM: Oscillator-Based Ising Machines for Solving Combinatorial Optimisation Problems

TL;DR: In this paper, the phase dynamics of coupled self-sustaining nonlinear oscillators are shown to be governed by a Lyapunov function that is closely related to the Ising Hamiltonian of the coupling graph.
References
More filters
Journal ArticleDOI

Quantum ground state and single-phonon control of a mechanical resonator

TL;DR: This work shows that conventional cryogenic refrigeration can be used to cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator—a ‘quantum drum’—coupled to a quantum bit, which is used to measure the quantum state of the resonator.
Journal ArticleDOI

Sideband cooling of micromechanical motion to the quantum ground state

TL;DR: Sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state is demonstrated and the device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons.
Journal ArticleDOI

Quantum annealing with manufactured spins

TL;DR: This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples, and may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
Journal ArticleDOI

Single spin detection by magnetic resonance force microscopy

TL;DR: The long relaxation time of the measured signal suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.
Journal ArticleDOI

On the computational complexity of Ising spin glass models

TL;DR: In a spin glass with Ising spins, the problems of computing the magnetic partition function and finding a ground state are studied and are shown to belong to the class of NP-hard problems, both in the two-dimensional case within a magnetic field, and in the three-dimensional cases.
Related Papers (5)