scispace - formally typeset
Open AccessJournal ArticleDOI

Anthraquinone Derivatives in Aqueous Flow Batteries

Reads0
Chats0
TLDR
In this article, the authors investigate four anthraquinone derivatives as negative electrolyte candidates for an aqueous quinone-bromide redox flow battery: AQS-2-sulfonic acid (AQS), 1,8-dihydroxyanthrathraquinones-2,7-disulfonics acid (DHAQDS), alizarin red S (ARS), and 1,4-dioxymethyl sulfonic acid, and DHAQDMS.
Abstract
Anthraquinone derivatives are being considered for large scale energy storage applications because of their chemical tunability and rapid redox kinetics. The authors investigate four anthraquinone derivatives as negative electrolyte candidates for an aqueous quinone-bromide redox flow battery: anthraquinone-2-sulfonic acid (AQS), 1,8-dihydroxyanthraquinone-2,7-disulfonic acid (DHAQDS), alizarin red S (ARS), and 1,4-dihydroxyanthraquinone-2,3-dimethylsulfonic acid (DHAQDMS). The standard reduction potentials are all lower than that of anthraquinone-2,7-disulfonic acid (AQDS), the molecule used in previous quinone-bromide batteries. DHAQDS and ARS undergo irreversible reactions on contact with bromine, which precludes their use against bromine but not necessarily against other electrolytes. DHAQDMS is apparently unreactive with bromine but cannot be reversibly reduced, whereas AQS is stable against bromine and stable upon reduction. The authors demonstrate an AQS-bromide flow cell with higher open circuit potential and peak galvanic power density than the equivalent AQDS-bromide cell. This study demonstrates the use of chemical synthesis to tailor organic molecules for improving flow battery performance.

read more

Citations
References
More filters
Book

CRC Handbook of Chemistry and Physics

TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Journal ArticleDOI

Redox flow batteries: a review

TL;DR: In this article, the components of RFBs with a focus on understanding the underlying physical processes are examined and various transport and kinetic phenomena are discussed along with the most common redox couples.
Journal ArticleDOI

A metal-free organic–inorganic aqueous flow battery

TL;DR: This work describes a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones, and demonstrates a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid.
Related Papers (5)