scispace - formally typeset
Open AccessJournal ArticleDOI

Antimicrobial activities of silver dressings: an in vitro comparison.

Reads0
Chats0
TLDR
Understanding the characteristics of silver-coated or -impregnated dressings may enable them to be targeted more appropriately according to the specific requirements for use of a particular dressing, as in for prophylaxis in skin grafting or for an infected wound with MRSA.
Abstract
A range of silver-coated or -impregnated dressings are now commercially available for use but comparative data on their antimicrobial efficacies are limited. The antibacterial activities of five commercially available silver-coated/impregnated dressings were compared against nine common burn-wound pathogens, namely methicillin-sensitive and -resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, Acinetobacter baumannii and a multi-drug-efflux-positive Acinetobacter baumannii (BM4454), using a broth culture method. The rapidity and extent of killing of these pathogens under in vitro conditions were evaluated. All five silver-impregnated dressings investigated exerted bactericidal activity, particularly against Gram-negative bacteria, including Enterobacter species, Proteus species and E. coli. The spectrum and rapidity of action, however, ranged widely for different dressings. Acticoat and Contreet had a broad spectrum of bactericidal activities against both Gram-positive and -negative bacteria. Contreet was characterized by a very rapid bactericidal action and achieved a reduction of > or =10,000 c.f.u. ml(-1) in the first 30 min for Enterobacter cloacae, Proteus vulgaris, Pseudomonas aeruginosa and Acinetobacter baumanii. Other dressings demonstrated a narrower range of bactericidal activities. Understanding the characteristics of these dressings may enable them to be targeted more appropriately according to the specific requirements for use of a particular dressing, as in for prophylaxis in skin grafting or for an infected wound with MRSA.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Effective Topical Delivery of H-AgNPs for Eradication of Klebsiella pneumoniae-Induced Burn Wound Infection.

TL;DR: The developed emulgel provided significant in vivo antibacterial activity of histidine-capped silver nanoparticle preparations via topical route and resulted in reduction in bacterial load, wound contraction, and enhanced skin healing as well as decrement of inflammatory markers such as malondialdehyde, myeloperoxidase, and reactive nitrogen intermediate compared to untreated animals.
Journal ArticleDOI

Influence of human acute wound fluid on the antibacterial efficacy of different antiseptic polyurethane foam dressings: An in vitro analysis.

TL;DR: The biomolecular interactions of antiseptic wound dressings with wound fluid should be part of more extensive investigations, considering varying factors such as bacterial species and wound (micro)environment to develop targeted therapeutic regimes for the individual.
Journal ArticleDOI

An overview of the methodological approach to the in vitro study of anti-infective biomaterials

TL;DR: A short overview of the currently available in vitro methods that can be used to investigate and assess the performance of anti-infective biomaterials, with special emphasis on those whose mechanism of action is based on bacteria-repellent surfaces.
Book ChapterDOI

Silver Nanoparticles as Nano-Antimicrobials: Bioactivity, Benefits and Bottlenecks

TL;DR: The present chapter deals with use of SNPs as a nano-antimicrobial agent, the different applications offered by SNPs and also the bottlenecks are discussed.
Journal ArticleDOI

Antifungal activity of silver ion on ultrastructure and production of aflatoxin B1 and patulin by two mycotoxigenic strains, Aspergillus flavus OC1 and Penicillium vulpinum CM1.

TL;DR: Findings indicate the future possibility to use silver ion as substitute for synthetic fungicides to control the growth of pathogenic fungi and their mycotoxin production.
References
More filters
Journal ArticleDOI

Bacterial silver resistance: molecular biology and uses and misuses of silver compounds

TL;DR: Resistance to silver compounds as determined by bacterial plasmids and genes has been defined by molecular genetics and the use of molecular epidemiological tools will establish the range and diversity of such resistance systems in clinical and non-clinical sources.
Journal ArticleDOI

Silver-based crystalline nanoparticles, microbially fabricated

TL;DR: Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections, in Pseudomonas stutzeri AG259.
Journal ArticleDOI

Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?

TL;DR: A completely new approach using supercritical carbon dioxide to impregnate silicone with nanoparticulate silver metal allows for the first time silver impregnation of medical polymers and promises to lead to an antimicrobial biomaterial whose activity is not restricted by increasing antibiotic resistance.
Journal ArticleDOI

Silver. I: Its antibacterial properties and mechanism of action.

TL;DR: The main mechanism of action of silver products, which are broad-spectrum antibiotics and are not yet associated with drug resistance, is described.
Related Papers (5)