scispace - formally typeset
Open AccessProceedings Article

Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization.

Reads0
Chats0
TLDR
In this article, adaptive instance normalization (AdaIN) is proposed to align the mean and variance of the content features with those of the style features, which enables arbitrary style transfer in real-time.
Abstract
Gatys et al. recently introduced a neural algorithm that renders a content image in the style of another image, achieving so-called style transfer. However, their framework requires a slow iterative optimization process, which limits its practical application. Fast approximations with feed-forward neural networks have been proposed to speed up neural style transfer. Unfortunately, the speed improvement comes at a cost: the network is usually tied to a fixed set of styles and cannot adapt to arbitrary new styles. In this paper, we present a simple yet effective approach that for the first time enables arbitrary style transfer in real-time. At the heart of our method is a novel adaptive instance normalization (AdaIN) layer that aligns the mean and variance of the content features with those of the style features. Our method achieves speed comparable to the fastest existing approach, without the restriction to a pre-defined set of styles. In addition, our approach allows flexible user controls such as content-style trade-off, style interpolation, color & spatial controls, all using a single feed-forward neural network.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

TL;DR: IBN-Net is presented, a novel convolutional architecture, which remarkably enhances a CNN’s modeling ability on one domain as well as its generalization capacity on another domain without finetuning.
Book ChapterDOI

Scale Aggregation Network for Accurate and Efficient Crowd Counting

TL;DR: A novel training loss, combining of Euclidean loss and local pattern consistency loss is proposed, which improves the performance of the model in the authors' experiments and achieves superior performance to state-of-the-art methods while with much less parameters.
Proceedings ArticleDOI

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models

TL;DR: This work presents a system that performs lengthy meta-learning on a large dataset of videos, and is able to frame few- and one-shot learning of neural talking head models of previously unseen people as adversarial training problems with high capacity generators and discriminators.
Proceedings ArticleDOI

Joint Discriminative and Generative Learning for Person Re-Identification

TL;DR: In this paper, a joint learning framework that couples re-id learning and data generation is proposed to improve learned re-ID embeddings by better leveraging the generated data, which leads to state-of-the-art performance on several benchmark datasets.
Journal ArticleDOI

Deep learning classifiers for hyperspectral imaging: A review

TL;DR: A comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature is provided, providing an exhaustive comparison of the discussed techniques.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Book ChapterDOI

Microsoft COCO: Common Objects in Context

TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Related Papers (5)