scispace - formally typeset
Open AccessJournal ArticleDOI

Benchmarking Least Squares Support Vector Machine Classifiers

TLDR
Both the SVM and LS-SVM classifier with RBF kernel in combination with standard cross-validation procedures for hyperparameter selection achieve comparable test set performances, consistently very good when compared to a variety of methods described in the literature.
Abstract
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set of equations in the dual space. While the SVM classifier has a large margin interpretation, the LS-SVM formulation is related in this paper to a ridge regression approach for classification with binary targets and to Fisher's linear discriminant analysis in the feature space. Multiclass categorization problems are represented by a set of binary classifiers using different output coding schemes. While regularization is used to control the effective number of parameters of the LS-SVM classifier, the sparseness property of SVMs is lost due to the choice of the 2-norm. Sparseness can be imposed in a second stage by gradually pruning the support value spectrum and optimizing the hyperparameters during the sparse approximation procedure. In this paper, twenty public domain benchmark datasets are used to evaluate the test set performance of LS-SVM classifiers with linear, polynomial and radial basis function (RBF) kernels. Both the SVM and LS-SVM classifier with RBF kernel in combination with standard cross-validation procedures for hyperparameter selection achieve comparable test set performances. These SVM and LS-SVM performances are consistently very good when compared to a variety of methods described in the literature including decision tree based algorithms, statistical algorithms and instance based learning methods. We show on ten UCI datasets that the LS-SVM sparse approximation procedure can be successfully applied.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Least Squares Support Vector Machines

TL;DR: Support Vector Machines Basic Methods of Least Squares Support Vector Machines Bayesian Inference for LS-SVM Models Robustness Large Scale Problems LS- sVM for Unsupervised Learning LS- SVM for Recurrent Networks and Control.
Journal ArticleDOI

Weighted least squares support vector machines: robustness and sparse approximation

TL;DR: The methods of this paper are illustrated for RBF kernels and demonstrate how to obtain robust estimates with selection of an appropriate number of hidden units, in the case of outliers or non-Gaussian error distributions with heavy tails.
Journal ArticleDOI

Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings

TL;DR: A framework for comparative software defect prediction experiments is proposed and applied in a large-scale empirical comparison of 22 classifiers over 10 public domain data sets from the NASA Metrics Data repository, showing an appealing degree of predictive accuracy, which supports the view that metric-based classification is useful.
Journal ArticleDOI

Benchmarking state-of-the-art classification algorithms for credit scoring

TL;DR: It is found that both the LS-SVM and neural network classifiers yield a very good performance, but also simple classifiers such as logistic regression and linear discriminant analysis perform very well for credit scoring.
Journal ArticleDOI

The support vector machine under test

TL;DR: A popular SVM implementation is compared to 16 classification methods and 9 regression methods accessible through the software R by the means of standard performance measures and bias-variance decompositions which showed mostly good performances both on classification and regression tasks, but other methods proved to be very competitive.
References
More filters
Book

The Nature of Statistical Learning Theory

TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Book

Matrix computations

Gene H. Golub

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Book

C4.5: Programs for Machine Learning

TL;DR: A complete guide to the C4.5 system as implemented in C for the UNIX environment, which starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting.
Trending Questions (1)
How can least squares classifiers be used to solve classification problems?

Least squares classifiers can be used to solve classification problems by formulating the problem as a linear set of equations in the dual space.