scispace - formally typeset
Journal ArticleDOI

Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment

Reads0
Chats0
TLDR
Biosorption is a physico-chemical process and includes such mechanisms as absorption, adsorption, ion exchange, surface complexation and precipitation as discussed by the authors, which has been heralded as a promising biotechnology for pollutant removal from solution, and/or pollutant recovery.
Abstract
Biosorption may be simply defined as the removal of substances from solution by biological material. Such substances can be organic and inorganic, and in gaseous, soluble or insoluble forms. Biosorption is a physico-chemical process and includes such mechanisms as absorption, adsorption, ion exchange, surface complexation and precipitation. Biosorption is a property of both living and dead organisms (and their components) and has been heralded as a promising biotechnology for pollutant removal from solution, and/or pollutant recovery, for a number of years, because of its efficiency, simplicity, analogous operation to conventional ion exchange technology, and availability of biomass. Most biosorption studies have carried out on microbial systems, chiefly bacteria, microalgae and fungi, and with toxic metals and radionuclides, including actinides like uranium and thorium. However, practically all biological material has an affinity for metal species and a considerable amount of other research exists with macroalgae (seaweeds) as well as plant and animal biomass, waste organic sludges, and many other wastes or derived bio-products. While most biosorption research concerns metals and related substances, including radionuclides, the term is now applied to particulates and all manner of organic substances as well. However, despite continuing dramatic increases in published research on biosorption, there has been little or no exploitation in an industrial context. This article critically reviews aspects of biosorption research regarding the benefits, disadvantages, and future potential of biosorption as an industrial process, the rationale, scope and scientific value of biosorption research, and the significance of biosorption in other waste treatment processes and in the environment. Copyright © 2008 Society of Chemical Industry

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Scaling-up of wastewater bioremediation by Tetradesmus obliquus, sequential bio-treatments of nutrients and metals.

TL;DR: This study demonstrates the potential of microalgae, in this case T. obliquus, to remove sequentially P and metals from aqueous media.
Book ChapterDOI

Biosorption: a mechanistic approach.

TL;DR: Biosorption has been studied mostly for inorganic ionic solutes, but there is also reported work on the biosorption of organic molecules, and Reference is also made to the biosOrption engineering application issues.
Journal Article

Formation, morphology and biotechnological applications of filamentous fungal pellets: A review.

TL;DR: The state of the art of fungal pellets is described, information on conditions of both inoculation and incubation that favor the formation of pellets at laboratory scale are provided, as well as the advantages and applications that pellets have in the field of biotechnology.
Journal ArticleDOI

Lead removal from solution by a porous ceramisite made from bentonite, metallic iron, and activated carbon

TL;DR: In this paper, a Fe0/AC-ceramisite was used for removing heavy metals from wastewater in China given its low cost, easy preparation, large available quantities, high mechanical strength and good performance to remove various pollutants.
Journal ArticleDOI

Biosorption of Rhodamine B Using a Low-Cost Biosorbent Prepared from Inactivated Aspergillus oryzae Cells: Kinetic, Equilibrium and Thermodynamic Studies

TL;DR: In this paper, the authors investigated the kinetics, isotherms, and thermodynamics of biosorption of the cationic dye rhodamine B by a low-cost biosorbent prepared from Aspergillus oryzae cells.
References
More filters
Journal ArticleDOI

Review of second-order models for adsorption systems.

TL;DR: An overview of second-order kinetic expressions is described in this paper based on the solid adsorption capacity, which shows that a pseudo-second-order rate expression has been widely applied to the Adsorption of pollutants from aqueous solutions onto adsorbents.
Book

Biosorption of Heavy Metals

TL;DR: The state of the art in the field of biosorption is reviewed, with many references to recent reviews and key individual contributions, and the composition of marine algae polysaccharide structures, which seem instrumental in metal uptake and binding are discussed.
Journal ArticleDOI

A review of potentially low-cost sorbents for heavy metals

TL;DR: The use of low-cost sorbents has been investigated as a replacement for current costly methods of removing heavy metals from solution as mentioned in this paper, where natural materials or waste products from certain industries with a high capacity for heavy metals can be obtained, employed and disposed of with little cost.
Book

The Chemistry of Soils

TL;DR: The Chemical Composition of Soils as mentioned in this paper is a well-known topic in the field of soil chemistry, and it has been used extensively in the literature to study the properties of soil.
Journal ArticleDOI

A review of the biochemistry of heavy metal biosorption by brown algae

TL;DR: The emphasis is on outlining the biochemical properties of the brown algae that set them apart from other algal biosorbents, including alginate and fucoidan, which are chiefly responsible for heavy metal chelation.