scispace - formally typeset
Journal ArticleDOI

BIRDSONG AND HUMAN SPEECH: Common Themes and Mechanisms

TLDR
Human speech and birdsong have numerous parallels, with striking similarities in how sensory experience is internalized and used to shape vocal outputs, and how learning is enhanced during a critical period of development.
Abstract
Human speech and birdsong have numerous parallels. Both humans and songbirds learn their complex vocalizations early in life, exhibiting a strong dependence on hearing the adults they will imitate, as well as themselves as they practice, and a waning of this dependence as they mature. Innate predispositions for perceiving and learning the correct sounds exist in both groups, although more evidence of innate descriptions of species-specific signals exists in songbirds, where numerous species of vocal learners have been compared. Humans also share with songbirds an early phase of learning that is primarily perceptual, which then serves to guide later vocal production. Both humans and songbirds have evolved a complex hierarchy of specialized forebrain areas in which motor and auditory centers interact closely, and which control the lower vocal motor areas also found in nonlearners. In both these vocal learners, however, how auditory feedback of self is processed in these brain areas is surprisingly unclear. Finally, humans and songbirds have similar critical periods for vocal learning, with a much greater ability to learn early in life. In both groups, the capacity for late vocal learning may be decreased by the act of learning itself, as well as by biological factors such as the hormones of puberty. Although some features of birdsong and speech are clearly not analogous, such as the capacity of language for meaning, abstraction, and flexible associations, there are striking similarities in how sensory experience is internalized and used to shape vocal outputs, and how learning is enhanced during a critical period of development. Similar neural mechanisms may therefore be involved.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The cortical organization of speech processing

TL;DR: A dual-stream model of speech processing is outlined that assumes that the ventral stream is largely bilaterally organized — although there are important computational differences between the left- and right-hemisphere systems — and that the dorsal stream is strongly left- Hemisphere dominant.
Journal ArticleDOI

The faculty of language: what is it, who has it, and how did it evolve?

TL;DR: It is argued that an understanding of the faculty of language requires substantial interdisciplinary cooperation and how current developments in linguistics can be profitably wedded to work in evolutionary biology, anthropology, psychology, and neuroscience is suggested.
Journal ArticleDOI

About sleep's role in memory

TL;DR: This review aims to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings.
Journal ArticleDOI

Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language.

TL;DR: It is shown how damage to different components of this framework can account for the major symptom clusters of the fluent aphasias, and some recent evidence concerning how sentence-level processing might be integrated into the framework is discussed.
Journal ArticleDOI

Early language acquisition: cracking the speech code

TL;DR: New data show that infants use computational strategies to detect the statistical and prosodic patterns in language input, and that this leads to the discovery of phonemes and words.
References
More filters
Book ChapterDOI

The Ontogeny and Developmental Significance of Language-Specific Phonetic Perception

TL;DR: The authors compared recent findings on non-native vowel perception to previous research on nonnative consonant discrimination and found that the influence from the native language on vowel perception by 6-months of age, but further changes occur during the second half of the first year of life.
Journal ArticleDOI

Steroid accumulation in song nuclei of a sexually dimorphic duetting bird, the rufous and white wren.

TL;DR: Comparisons with measures of hormone accumulation in zebra finches, canaries, and bay wrens supports the hypothesis presented that the relative proportion of neurons that are hormone sensitive in avian song control nuclei is related to the basic motor ability to sing, whereas the absolute number of such neurons isrelated to the complexity of song behavior.
Journal ArticleDOI

Effects of language experience on speech perception: American and Japanese infants’ perception of /ra/ and /la/

TL;DR: This article found that infants begin to ignore phonetic variations that are irrelevant in their native language, with increasing exposure to a particular language, and this effect was observed in infants listening to language during the first year of life.

Anatomical asymmetry as the basis for cerebral dominance

N Geschwind
TL;DR: The paper summarizes the findings of striking anatomical asymmetry of the upper surface of the temporal lobe, in an area known to be involved in speech functions, and discusses the implications of these findings.
Journal ArticleDOI

Hormonal influence on language development in physically advanced children

TL;DR: Language function was examined in patients with accelerated maturation caused by conditions with sex hormone elevation, and significant language performance differences were noted between androgen- vs. estrogen-exposed patients, indicating a hormonal effect on language development over time.
Related Papers (5)