scispace - formally typeset
Open AccessJournal ArticleDOI

Canonical sampling through velocity rescaling

Giovanni Bussi, +2 more
- 03 Jan 2007 - 
- Vol. 126, Iss: 1, pp 014101-014101
TLDR
In this paper, the authors present a new molecular dynamics algorithm for sampling the canonical distribution, where the velocities of all the particles are rescaled by a properly chosen random factor.
Abstract
The authors present a new molecular dynamics algorithm for sampling the canonical distribution. In this approach the velocities of all the particles are rescaled by a properly chosen random factor. The algorithm is formally justified and it is shown that, in spite of its stochastic nature, a quantity can still be defined that remains constant during the evolution. In numerical applications this quantity can be used to measure the accuracy of the sampling. The authors illustrate the properties of this new method on Lennard-Jones and TIP4P water models in the solid and liquid phases. Its performance is excellent and largely independent of the thermostat parameter also with regard to the dynamic properties.

read more

Citations
More filters
Journal ArticleDOI

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.
Journal ArticleDOI

g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.

TL;DR: A new tool, g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described, and the calculated interaction energy of 37 structurally diverse HIV-1 protease inhibitor complexes is compared.
Journal ArticleDOI

Well-tempered metadynamics: a smoothly converging and tunable free-energy method.

TL;DR: A method for determining the free-energy dependence on a selected number of collective variables using an adaptive bias and the formalism provides a unified description which has metadynamics and canonical sampling as limiting cases.
Journal ArticleDOI

cp2k: atomistic simulations of condensed matter systems

TL;DR: The main capabilities of cp2k are summarized, and with recent applications the science cp2K has enabled in the field of atomistic simulation are illustrated.
References
More filters
Journal ArticleDOI

Comparison of simple potential functions for simulating liquid water

TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Journal ArticleDOI

Molecular dynamics with coupling to an external bath.

TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Journal ArticleDOI

Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems

TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Book

Computer Simulation of Liquids

TL;DR: In this paper, the gear predictor -corrector is used to calculate forces and torques in a non-equilibrium molecular dynamics simulation using Monte Carlo methods. But it is not suitable for the gear prediction problem.
Journal ArticleDOI

Canonical dynamics: Equilibrium phase-space distributions

TL;DR: The dynamical steady-state probability density is found in an extended phase space with variables x, p/sub x/, V, epsilon-dot, and zeta, where the x are reduced distances and the two variables epsilus-dot andZeta act as thermodynamic friction coefficients.
Related Papers (5)