scispace - formally typeset
Journal ArticleDOI

Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths

Reads0
Chats0
TLDR
The carbon inverse opals provide examples of both dielectric and metallic optical photonic crystals that strongly diffract light and may provide a route toward photonic band-gap materials.
Abstract
Porous carbons that are three-dimensionally periodic on the scale of optical wavelengths were made by a synthesis route resembling the geological formation of natural opal. Porous silica opal crystals were sintered to form an intersphere interface through which the silica was removed after infiltration with carbon or a carbon precursor. The resulting porous carbons had different structures depending on synthesis conditions. Both diamond and glassy carbon inverse opals resulted from volume filling. Graphite inverse opals, comprising 40-angstrom-thick layers of graphite sheets tiled on spherical surfaces, were produced by surface templating. The carbon inverse opals provide examples of both dielectric and metallic optical photonic crystals. They strongly diffract light and may provide a route toward photonic band-gap materials.

read more

Citations
More filters
Proceedings Article

Photonic crystals

TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Journal ArticleDOI

Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation

TL;DR: Ordered carbon molecular sieves exhibiting Bragg diffraction of X-ray lines have been synthesized for the first time, using mesoporous silica sieves as the template.
Journal ArticleDOI

Recent Progress in the Synthesis of Porous Carbon Materials

TL;DR: A review of the progress made in the last ten years concerning the synthesis of porous carbon materials is summarized in this paper, where several different routes have been used to synthesize mesoporous carbon materials.
Journal ArticleDOI

High-performance lithium-ion anodes using a hierarchical bottom-up approach

TL;DR: A large-scale hierarchical bottom-up assembly route for the formation of Si on the nanoscale--containing rigid and robust spheres with irregular channels for rapid access of Li ions into the particle bulk.
Journal ArticleDOI

Fabrication of photonic crystals for the visible spectrum by holographic lithography

TL;DR: This work describes a technique—three-dimensional holographic lithography—that is well suited to the production of three-dimensional structures with sub-micrometre periodicity, and has made microperiodic polymeric structures, and used these as templates to create complementary structures with higher refractive-index contrast.
References
More filters
Journal ArticleDOI

Inhibited Spontaneous Emission in Solid-State Physics and Electronics

TL;DR: If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.
Journal ArticleDOI

Strong localization of photons in certain disordered dielectric superlattices

TL;DR: A new mechanism for strong Anderson localization of photons in carefully prepared disordered dielectric superlattices with an everywhere real positive dielectrics constant is described.
Journal ArticleDOI

Extraordinary optical transmission through sub-wavelength hole arrays

TL;DR: In this article, the optical properties of submicrometre cylindrical cavities in metallic films were explored and it was shown that arrays of such holes display highly unusual zero-order transmission spectra at wavelengths larger than the array period, beyond which no diffraction occurs.
Proceedings Article

Photonic crystals

TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Related Papers (5)