scispace - formally typeset
Open AccessProceedings ArticleDOI

Channel Agnostic End-to-End Learning Based Communication Systems with Conditional GAN

Reads0
Chats0
TLDR
An end-to-end wireless communication system in which DNNs are employed for all signal-related functionalities, including encoding, decoding, modulation, and equalization is developed, in which accurate instantaneous channel transfer function is necessary to compute the gradient of the DNN representing.
Abstract
In this article, we use deep neural networks (DNNs) to develop an end-to-end wireless communication system, in which DNNs are employed for all signal-related functionalities, including encoding, decoding, modulation, and equalization. However, accurate instantaneous channel transfer function, i.e., the channel state information (CSI), is necessary to compute the gradient of the DNN representing. In many communication systems, the channel transfer function is hard to obtain in advance and varies with time and location. In this article, this constraint is released by developing a channel agnostic end-to-end system that does not rely on any prior information about the channel. We use a conditional generative adversarial net (GAN) to represent the channel effects, where the encoded signal of the transmitter will serve as the conditioning information. In addition, in order to obtain accurate channel state information for signal detection at the receiver, the received signal corresponding to the pilot data is added as a part of the conditioning information. From the simulation results, the proposed method is effective on additive white Gaussian noise (AWGN) and Rayleigh fading channels, which opens a new door for building data-driven communication systems.

read more

Citations
More filters
Journal ArticleDOI

Deep Learning in Mobile and Wireless Networking: A Survey

TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Journal ArticleDOI

Wireless Network Intelligence at the Edge

TL;DR: In this article, the key building blocks of edge ML, different neural network architectural splits and their inherent tradeoffs, as well as theoretical and technical enablers stemming from a wide range of mathematical disciplines are presented.
Journal ArticleDOI

A Very Brief Introduction to Machine Learning With Applications to Communication Systems

TL;DR: In this paper, the authors provide a high-level introduction to the basics of supervised and unsupervised learning, exemplifying applications to communication networks by distinguishing tasks carried out at the edge and at the cloud segments of the network at different layers of the protocol stack, with an emphasis on the physical layer.
Journal ArticleDOI

Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?

TL;DR: It will be shown that the data-driven approaches should not replace, but rather complement, traditional design techniques based on mathematical models in future wireless communication networks.
Journal ArticleDOI

Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future

TL;DR: A novel QC-assisted and QML-based framework for 6G communication networks is proposed while articulating its challenges and potential enabling technologies at the network infrastructure, network edge, air interface, and user end.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Posted Content

Conditional Generative Adversarial Nets

Mehdi Mirza, +1 more
- 06 Nov 2014 - 
TL;DR: The conditional version of generative adversarial nets is introduced, which can be constructed by simply feeding the data, y, to the generator and discriminator, and it is shown that this model can generate MNIST digits conditioned on class labels.
Journal ArticleDOI

An Introduction to Deep Learning for the Physical Layer

TL;DR: In this article, an end-to-end reconstruction task was proposed to jointly optimize transmitter and receiver components in a single process, which can be extended to networks of multiple transmitters and receivers.
Journal ArticleDOI

Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems

TL;DR: The proposed deep learning-based approach to handle wireless OFDM channels in an end-to-end manner is more robust than conventional methods when fewer training pilots are used, the cyclic prefix is omitted, and nonlinear clipping noise exists.
Related Papers (5)