scispace - formally typeset
Journal ArticleDOI

Chemical characterization of silicon-substituted hydroxyapatite.

TLDR
Chemical analysis confirmed the proposed substitution of the silicon (or silicate) ion for the phosphorus (or phosphate) ion in hydroxyapatite and demonstrated that phase-pure silicon-substituted hydroxyAPatite may be prepared using a simple precipitation technique.
Abstract
Bioceramic specimens have been prepared by incorporating a small amount of silicon (0.4 wt %) into the structure of hydroxyapatite [Ca10(PO4)6(OH)2, HA] via an aqueous precipitation reaction to produce a silicon-substituted hydroxyapatite (Si-HA). The results of chemical analysis confirmed the proposed substitution of the silicon (or silicate) ion for the phosphorus (or phosphate) ion in hydroxyapatite. The Si-HA was produced by first preparing a silicon-substituted apatite (Si-Ap) by a precipitation process. A single-phase Si-HA was obtained by heating/calcining the as-prepared Si-Ap to temperatures above 700 degrees C; no secondary phases, such as tricalcium phosphate (TCP), tetracalcium phosphate (TeCP), or calcium oxide (CaO), were observed by X-ray diffraction analysis. Although the X-ray diffraction patterns of Si-HA and stoichiometric HA appeared to be identical, refinement of the diffraction data revealed some small structural differences between the two materials. The silicon substitution in the HA lattice resulted in a small decrease in the a axis and an increase in the c axis of the unit cell. This substitution also caused a decrease in the number of hydroxyl (OH) groups in the unit cell, which was expected from the proposed substitution mechanism. The incorporation of silicon in the HA lattice resulted in an increase in the distortion of the PO4 tetrahedra, indicated by an increase in the distortion index. Analysis of the Si-HA by Fourier transform infrared (FTIR) spectroscopy indicated that although the amount of silicon incorporated into the HA lattice was small, silicon substitution appeared to affect the FTIR spectra of HA, in particular the P-O vibrational bands. The results demonstrate that phase-pure silicon-substituted hydroxyapatite may be prepared using a simple precipitation technique.

read more

Citations
More filters
Journal ArticleDOI

Nanoscale hydroxyapatite particles for bone tissue engineering

TL;DR: This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development.
Journal ArticleDOI

Calcium phosphates as substitution of bone tissues

TL;DR: In this paper, a review of the role played by biological calcium phosphates in bone regeneration is presented, where the synthesis procedures to obtain in the laboratory calcium deficient carbonate nanoapatite both in bulk and thin film forms, as well as the characterization methods applied to these materials are described.
Journal ArticleDOI

Bioceramics: Past, present and for the future

TL;DR: There have been a number of major advances made in the field of bioactive ceramics, glasses and glass-ceramics during the past 30-40 years.
Journal ArticleDOI

Ionic substitutions in calcium phosphates synthesized at low temperature.

TL;DR: An overview of the recent results achieved on ion-substituted calcium phosphates prepared at low temperature, i.e. by direct synthesis in aqueous medium or through hydrolysis of more soluble calcium phosphate based materials is provided.
Journal ArticleDOI

Calcium phosphates in biomedical applications: materials for the future?

TL;DR: The aim of this manuscript is to highlight the tremendous improvements achieved in CaP materials research in the past 15 years, in particular in the field of biomineralization, as carrier for gene or ion delivery, as biologically active agent, and as bone graft substitute.
References
More filters
Journal ArticleDOI

Solubility characteristics of synthetic silicate sulphate apatites

TL;DR: Isomorphic substitution of (Si, S) for phosphorus in apatite (Ca5(PO)3F) was investigated in the solid solution series from P-apatite to (Si-S)-APatite utilizing compositions of Ca5PO4)3−x (SiO4)x/2(SO4)ex/2F with x=0, 0.75, 1.5, 2, 2.25, 3.25 and 3.5F as discussed by the authors.
Related Papers (5)