scispace - formally typeset
Open AccessJournal ArticleDOI

Collective motion and density fluctuations in bacterial colonies.

Reads0
Chats0
TLDR
This work reports simultaneous measurements of the positions, velocities, and orientations as a function of time for up to a thousand wild-type Bacillus subtilis bacteria in a colony, demonstrating that bacteria are an excellent system to study the general phenomenon of collective motion.
Abstract
Flocking birds, fish schools, and insect swarms are familiar examples of collective motion that plays a role in a range of problems, such as spreading of diseases. Models have provided a qualitative understanding of the collective motion, but progress has been hindered by the lack of detailed experimental data. Here we report simultaneous measurements of the positions, velocities, and orientations as a function of time for up to a thousand wild-type Bacillus subtilis bacteria in a colony. The bacteria spontaneously form closely packed dynamic clusters within which they move cooperatively. The number of bacteria in a cluster exhibits a power-law distribution truncated by an exponential tail. The probability of finding clusters with large numbers of bacteria grows markedly as the bacterial density increases. The number of bacteria per unit area exhibits fluctuations far larger than those for populations in thermal equilibrium. Such “giant number fluctuations” have been found in models and in experiments on inert systems but not observed previously in a biological system. Our results demonstrate that bacteria are an excellent system to study the general phenomenon of collective motion.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Hydrodynamics of soft active matter

TL;DR: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments, and highlights the experimental relevance of various semimicroscopic derivations of the continuum theory for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material.
Journal ArticleDOI

Collective Motion

TL;DR: In this paper, the basic laws describing the essential aspects of collective motion are reviewed and a discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, are provided.
Journal ArticleDOI

Living Crystals of Light-Activated Colloidal Surfers

TL;DR: A form of self-organization from nonequilibrium driving forces in a suspension of synthetic photoactivated colloidal particles is demonstrated, which leads to two-dimensional "living crystals," which form, break, explode, and re-form elsewhere.
Journal ArticleDOI

Active Brownian Particles. From Individual to Collective Stochastic Dynamics

TL;DR: In this paper, the authors focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics.
Journal ArticleDOI

Emergence of macroscopic directed motion in populations of motile colloids

TL;DR: Bartolo et al. as discussed by the authors showed that a population of millions of colloidal rolling particles can self-organize and move in one direction in a crowd of millions using simple hydrodynamic interactions.
References
More filters
Proceedings ArticleDOI

Flocks, herds and schools: A distributed behavioral model

TL;DR: In this article, an approach based on simulation as an alternative to scripting the paths of each bird individually is explored, with the simulated birds being the particles and the aggregate motion of the simulated flock is created by a distributed behavioral model much like that at work in a natural flock; the birds choose their own course.
Journal ArticleDOI

Novel Type of Phase Transition in a System of Self-Driven Particles

TL;DR: Numerical evidence is presented that this model results in a kinetic phase transition from no transport to finite net transport through spontaneous symmetry breaking of the rotational symmetry.
Journal ArticleDOI

The hydrodynamics of swimming microorganisms

TL;DR: The biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below are reviewed, with emphasis on the simple physical picture and fundamental flow physics phenomena in this regime.
Journal ArticleDOI

A movement ecology paradigm for unifying organismal movement research

TL;DR: A conceptual framework depicting the interplay among four basic mechanistic components of organismal movement is introduced, providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes.
Journal ArticleDOI

Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study

TL;DR: It is argued that a topological interaction is indispensable to maintain a flock's cohesion against the large density changes caused by external perturbations, typically predation, and supported by numerical simulations.
Related Papers (5)