scispace - formally typeset
Open AccessJournal ArticleDOI

Community structure in social and biological networks

Michelle Girvan, +1 more
- 11 Jun 2002 - 
- Vol. 99, Iss: 12, pp 7821-7826
TLDR
This article proposes a method for detecting communities, built around the idea of using centrality indices to find community boundaries, and tests it on computer-generated and real-world graphs whose community structure is already known and finds that the method detects this known structure with high sensitivity and reliability.
Abstract
A number of recent studies have focused on the statistical properties of networked systems such as social networks and the Worldwide Web. Researchers have concentrated particularly on a few properties that seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this article, we highlight another property that is found in many networks, the property of community structure, in which network nodes are joined together in tightly knit groups, between which there are only looser connections. We propose a method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer-generated and real-world graphs whose community structure is already known and find that the method detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well known—a collaboration network and a food web—and find that it detects significant and informative community divisions in both cases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Structure and Function of Complex Networks

Mark Newman
- 01 Jan 2003 - 
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Journal ArticleDOI

Fast unfolding of communities in large networks

TL;DR: This work proposes a heuristic method that is shown to outperform all other known community detection methods in terms of computation time and the quality of the communities detected is very good, as measured by the so-called modularity.
Journal ArticleDOI

Finding and evaluating community structure in networks.

TL;DR: It is demonstrated that the algorithms proposed are highly effective at discovering community structure in both computer-generated and real-world network data, and can be used to shed light on the sometimes dauntingly complex structure of networked systems.
Journal ArticleDOI

Fast unfolding of communities in large networks

TL;DR: In this paper, the authors proposed a simple method to extract the community structure of large networks based on modularity optimization, which is shown to outperform all other known community detection methods in terms of computation time.
Journal ArticleDOI

Modularity and community structure in networks

TL;DR: In this article, the modularity of a network is expressed in terms of the eigenvectors of a characteristic matrix for the network, which is then used for community detection.
References
More filters
Journal ArticleDOI

Random graphs with arbitrary degree distributions and their applications.

TL;DR: It is demonstrated that in some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the behavior of the real world, while in others there is a measurable discrepancy between theory and reality, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
Journal ArticleDOI

A new status index derived from sociometric analysis.

TL;DR: A new method of computation which takes into account who chooses as well as how many choose is presented, which introduces the concept of attenuation in influence transmitted through intermediaries.
Journal ArticleDOI

Classes of small-world networks

TL;DR: Evidence of the occurrence of three classes of small-world networks, characterized by a vertex connectivity distribution that decays as a power law law, and the nature of such constraints may be the controlling factor for the emergence of different classes of networks are presented.
Journal ArticleDOI

Graph structure in the Web

TL;DR: The study of the web as a graph yields valuable insight into web algorithms for crawling, searching and community discovery, and the sociological phenomena which characterize its evolution.
Journal ArticleDOI

Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality

TL;DR: In this article, the authors constructed networks of collaboration between scientists in each of these disciplines and proposed a measure of collaboration strength based on the number of papers coauthored by pairs of scientists, and the number other scientists with whom they coauthored those papers.
Related Papers (5)