scispace - formally typeset
Open AccessJournal ArticleDOI

Community structure in social and biological networks

Michelle Girvan, +1 more
- 11 Jun 2002 - 
- Vol. 99, Iss: 12, pp 7821-7826
Reads0
Chats0
TLDR
This article proposes a method for detecting communities, built around the idea of using centrality indices to find community boundaries, and tests it on computer-generated and real-world graphs whose community structure is already known and finds that the method detects this known structure with high sensitivity and reliability.
Abstract
A number of recent studies have focused on the statistical properties of networked systems such as social networks and the Worldwide Web. Researchers have concentrated particularly on a few properties that seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this article, we highlight another property that is found in many networks, the property of community structure, in which network nodes are joined together in tightly knit groups, between which there are only looser connections. We propose a method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer-generated and real-world graphs whose community structure is already known and find that the method detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well known—a collaboration network and a food web—and find that it detects significant and informative community divisions in both cases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Spread of epidemic disease on networks.

TL;DR: This paper shows that a large class of standard epidemiological models, the so-called susceptible/infective/removed (SIR) models can be solved exactly on a wide variety of networks.
Proceedings ArticleDOI

Why we twitter: understanding microblogging usage and communities

TL;DR: It is found that people use microblogging to talk about their daily activities and to seek or share information and the user intentions associated at a community level are analyzed to show how users with similar intentions connect with each other.
Journal ArticleDOI

Synchronization in complex networks

TL;DR: The advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology are reported and the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections are overviewed.
Journal ArticleDOI

Mixing patterns in networks.

TL;DR: This work proposes a number of measures of assortative mixing appropriate to the various mixing types, and applies them to a variety of real-world networks, showing that assortsative mixing is a pervasive phenomenon found in many networks.
Journal ArticleDOI

Resolution limit in community detection

TL;DR: In this paper, it was shown that modularity optimization may fail to identify modules smaller than a scale which depends on the total size of the network and the degree of interconnectedness of the modules, even in cases where modules are unambiguously defined.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Book

Network Flows: Theory, Algorithms, and Applications

TL;DR: In-depth, self-contained treatments of shortest path, maximum flow, and minimum cost flow problems, including descriptions of polynomial-time algorithms for these core models are presented.
Journal ArticleDOI

A Set of Measures of Centrality Based on Betweenness

TL;DR: A family of new measures of point and graph centrality based on early intuitions of Bavelas (1948) is introduced in this paper, which define centrality in terms of the degree to which a point falls on the shortest path between others and there fore has a potential for control of communication.
Journal ArticleDOI

Exploring complex networks

TL;DR: This work aims to understand how an enormous network of interacting dynamical systems — be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and coupling architecture.
Related Papers (5)