scispace - formally typeset
Open AccessJournal ArticleDOI

Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats.

Reads0
Chats0
TLDR
Results from the lung histopathology component of the study indicated that pulmonary exposures to quartz particles produced dose-dependent inflammatory responses, concomitant with foamy alveolar macrophage accumulation and lung tissue thickening at the sites of normal particle deposition.
About
This article is published in Toxicological Sciences.The article was published on 2003-09-26 and is currently open access. It has received 1476 citations till now. The article focuses on the topics: Pulmonary toxicity & Bronchoalveolar lavage.

read more

Citations
More filters
Journal ArticleDOI

Toxic Potential of Materials at the Nanolevel

TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Journal ArticleDOI

Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Journal ArticleDOI

Drug delivery and nanoparticles:applications and hazards

TL;DR: An overview on some of the currently used systems for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles is provided.
Journal ArticleDOI

The physical impacts of microplastics on marine organisms: a review.

TL;DR: This review focuses on marine invertebrates and their susceptibility to the physical impacts of microplastic uptake and an assessment of the relative susceptibility of different feeding guilds.
Posted Content

Nanomaterials and nanoparticles: Sources and toxicity

TL;DR: A review of the toxicity of nanoparticles is presented in this paper, with the goal of informing public health concerns related to nanoscience while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them.
References
More filters
Journal ArticleDOI

Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation

TL;DR: Results show that, for the test conditions described here and on an equal-weight basis, if carbon nanotubes reach the lungs, they are much more toxic than carbon black and can be more Toxic than quartz, which is considered a serious occupational health hazard in chronic inhalation exposures.
Journal ArticleDOI

Large-scale purification of single-wall carbon nanotubes: process, product, and characterization

TL;DR: A readily scalable purification process capable of handling single-wall carbon nanotube (SWNT) material in large batches, which should greatly facilitate investigation of material properties intrinsic to the nanotubes.
Journal ArticleDOI

Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells

TL;DR: Investigation of adverse effects of single-wall carbon nanotubes using a cell culture of immortalized human epidermal keratinocytes indicates that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.
Journal ArticleDOI

Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material

TL;DR: Although laboratory studies indicated that with sufficient agitation, unrefined SWCNT material can release fine particles into the air, concentrations generated while handling material in the field were very low, and estimates of the airborne concen-tration of nanotube material generated during handling suggest that concentrations were lower than 53μg/m3 in all cases.
Journal ArticleDOI

Chronic Inhalation Exposure of Wistar Rats and two Different Strains of Mice to Diesel Engine Exhaust, Carbon Black, and Titanium Dioxide

TL;DR: In this paper, Wistar rats were exposed for two years to diesel engine exhaust, carbon black (Printex 90, Degussa, FR. G), and ultraline TiO2 (P25, P25, DEG), and were subsequently kept in clean air for 6 mo.
Related Papers (5)