scispace - formally typeset
Journal ArticleDOI

Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier.

J. C. Slonczewski
- 01 Apr 1989 - 
- Vol. 39, Iss: 10, pp 6995-7002
Reads0
Chats0
TLDR
In this article, a theory is given for three closely related effects involving a nonmagnetic electron-tunneling barrier separating two ferromagnetic conductors, and the theory predicts that the valve effect is weak and that the coupling is antiferromagnetic (Jl0).
Abstract
A theory is given for three closely related effects involving a nonmagnetic electron-tunneling barrier separating two ferromagnetic conductors. The first is Julliere's magnetic valve effect, in which the tunnel conductance depends on the angle \ensuremath{\theta} between the moments of the two ferromagnets. One finds that discontinuous change of the potential at the electrode-barrier interface diminishes the spin-polarization factor governing this effect and is capable of changing its sign. The second is an effective interfacial exchange coupling -J cos\ensuremath{\theta} between the ferromagnets. One finds that the magnitude and sign of J depend on the height of the barrier and the Stoner splitting in the ferromagnets. The third is a new, irreversible exchange term in the coupled dynamics of the ferromagnets. For one sign of external voltage V, this term describes relaxation of the Landau-Lifshitz type. For the opposite sign of V, it describes a pumping action which can cause spontaneous growth of magnetic oscillations. All of these effects were investigated consistently by analyzing the transmission of charge and spin currents flowing through a rectangular barrier separating free-electron metals. In application to Fe-C-Fe junctions, the theory predicts that the valve effect is weak and that the coupling is antiferromagnetic (Jl0). Relations connecting the three effects suggest experiments involving small spatial dimensions.

read more

Citations
More filters
Journal ArticleDOI

Spintronics: Fundamentals and applications

TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Journal ArticleDOI

Current-driven excitation of magnetic multilayers

TL;DR: In this paper, a new mechanism was proposed for exciting the magnetic state of a ferromagnet, where a transfer of vectorial spin accompanied an electric current flowing perpendicular to two parallel magnetic films connected by a normal metallic spacer.
Journal ArticleDOI

The emergence of spin electronics in data storage

TL;DR: The authors are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials, allowing faster, low-energy operations: spin electronics is on its way.
Journal ArticleDOI

Observation of the spin Seebeck effect

TL;DR: The spin Seebeck effect allows us to pass a pure spin current, a flow of electron spins without electric currents, over a long distance, and is directly applicable to the production of spin-voltage generators, which are crucial for driving spintronic devices.
Journal ArticleDOI

Spin transfer torques

TL;DR: In this paper, the physics of spin transfer torque in magnetic devices are discussed and an elementary discussion of the mechanism and experimental progress in this field is provided, along with a review of theoretical and experimental results.
Related Papers (5)