scispace - formally typeset
Journal ArticleDOI

Coupled Dictionary Training for Image Super-Resolution

Reads0
Chats0
TLDR
This paper demonstrates that the coupled dictionary learning method can outperform the existing joint dictionary training method both quantitatively and qualitatively and speed up the algorithm approximately 10 times by learning a neural network model for fast sparse inference and selectively processing only those visually salient regions.
Abstract
In this paper, we propose a novel coupled dictionary training method for single-image super-resolution (SR) based on patchwise sparse recovery, where the learned couple dictionaries relate the low- and high-resolution (HR) image patch spaces via sparse representation. The learning process enforces that the sparse representation of a low-resolution (LR) image patch in terms of the LR dictionary can well reconstruct its underlying HR image patch with the dictionary in the high-resolution image patch space. We model the learning problem as a bilevel optimization problem, where the optimization includes an l1-norm minimization problem in its constraints. Implicit differentiation is employed to calculate the desired gradient for stochastic gradient descent. We demonstrate that our coupled dictionary learning method can outperform the existing joint dictionary training method both quantitatively and qualitatively. Furthermore, for real applications, we speed up the algorithm approximately 10 times by learning a neural network model for fast sparse inference and selectively processing only those visually salient regions. Extensive experimental comparisons with state-of-the-art SR algorithms validate the effectiveness of our proposed approach.

read more

Citations
More filters
Journal ArticleDOI

Image Super-Resolution Using Deep Convolutional Networks

TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Book ChapterDOI

Learning a Deep Convolutional Network for Image Super-Resolution

TL;DR: This work proposes a deep learning method for single image super-resolution (SR) that directly learns an end-to-end mapping between the low/high-resolution images and shows that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network.
Proceedings ArticleDOI

Enhanced Deep Residual Networks for Single Image Super-Resolution

TL;DR: This paper develops an enhanced deep super-resolution network (EDSR) with performance exceeding those of current state-of-the-art SR methods, and proposes a new multi-scale deepsuper-resolution system (MDSR) and training method, which can reconstruct high-resolution images of different upscaling factors in a single model.
Proceedings ArticleDOI

Single image super-resolution from transformed self-exemplars

TL;DR: This paper expands the internal patch search space by allowing geometric variations, and proposes a compositional model to simultaneously handle both types of transformations to accommodate local shape variations.
Posted Content

Image Super-Resolution Using Deep Convolutional Networks

TL;DR: This work proposes a deep learning method for single image super-resolution (SR) that directly learns an end-to-end mapping between the low/high-resolution images, represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one.
References
More filters
Journal ArticleDOI

De-noising by soft-thresholding

TL;DR: The authors prove two results about this type of estimator that are unprecedented in several ways: with high probability f/spl circ/*/sub n/ is at least as smooth as f, in any of a wide variety of smoothness measures.
Journal ArticleDOI

$rm K$ -SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

TL;DR: A novel algorithm for adapting dictionaries in order to achieve sparse signal representations, the K-SVD algorithm, an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data.
Journal ArticleDOI

Image Super-Resolution Via Sparse Representation

TL;DR: This paper presents a new approach to single-image superresolution, based upon sparse signal representation, which generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods.
Proceedings Article

Efficient sparse coding algorithms

TL;DR: These algorithms are applied to natural images and it is demonstrated that the inferred sparse codes exhibit end-stopping and non-classical receptive field surround suppression and, therefore, may provide a partial explanation for these two phenomena in V1 neurons.
Related Papers (5)