scispace - formally typeset
Open AccessJournal ArticleDOI

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

TLDR
This work addresses the task of semantic image segmentation with Deep Learning and proposes atrous spatial pyramid pooling (ASPP), which is proposed to robustly segment objects at multiple scales, and improves the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models.
Abstract
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First , we highlight convolution with upsampled filters, or ‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second , we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third , we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed “DeepLab” system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.

read more

Citations
More filters
Journal ArticleDOI

Guided Soft Attention Network for Classification of Breast Cancer Histopathology Images

TL;DR: An attention guided convolutional neural network (CNN) for the classification of breast cancer histopathology images using CNN, where the regions of interest (RoI) are localized and used to guide the attention of the classification network simultaneously.
Posted Content

Unsupervised Domain Adaptation in Semantic Segmentation: a Review

TL;DR: The aim of this paper is to give an overview of the recent advancements in the Unsupervised Domain Adaptation of deep networks for semantic segmentation, and a comparison of the performance of the various methods in the widely used autonomous driving scenario is presented.
Posted Content

Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis

TL;DR: A comprehensive review and a meta-analysis of the recent progress in change detection DL studies for remote sensing images and the fundamentals of deep learning methods which are frequently adopted for change detection are introduced.
Proceedings ArticleDOI

Urban Driving with Conditional Imitation Learning

TL;DR: This work presents an end-to-end conditional imitation learning approach, combining both lateral and longitudinal control on a real vehicle for following urban routes with simple traffic.
Proceedings ArticleDOI

CRNet: Cross-Reference Networks for Few-Shot Segmentation

TL;DR: This paper proposes a cross-reference network (CRNet) for few-shot segmentation, and develops a mask refinement module to recurrently refine the prediction of the foreground regions in the query image.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).