scispace - formally typeset
Journal ArticleDOI

Deposition of Ultrafine (NANO) Particles in the Human Lung

Bahman Asgharian, +1 more
- 01 Oct 2007 - 
- Vol. 19, Iss: 13, pp 1045-1054
TLDR
A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries and good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature.
Abstract
Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.

read more

Citations
More filters
Journal ArticleDOI

Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies

TL;DR: Combination of biological data generated in different biological models and in silico modeling appears suitable for a realistic estimation of potential risks by inhalation exposure to NPs.
Journal ArticleDOI

In Silico Models of Aerosol Delivery to the Respiratory Tract – Development and Applications

TL;DR: Recommendations are made on the need for more refined model validations, use of a concurrent experimental and CFD approach for developing aerosol delivery systems, and development of a stochastic individual path (SIP) model of aerosol transport and deposition throughout the respiratory tract.
Journal ArticleDOI

Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential.

TL;DR: Estimates of lung deposition after occupational exposure to nanomaterials to recommend in vitro testing concentrations for the U.S. Environmental Protection Agency’s ToxCast™ program are used and analyses performed are generally applicable for providing ENMTesting concentrations for in vitro hazard screening studies, although further research is needed to improve the approach.
Journal ArticleDOI

Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review

TL;DR: In this article, the main sources of nanoparticles in the aquatic environment, their interactions and transformation processes are reviewed and a review of possible toxicity forms and the factors affecting nanoparticles toxicity in aquatic environment is presented.
Journal ArticleDOI

The immune effects of naturally occurring and synthetic nanoparticles.

TL;DR: In vitro and animal studies are showing that nanoparticles and UFPs are capable of activating proinflammatory cytokines, chemokines and adhesion molecules, with recruitment of inflammatory cells including basophils, macrophages, dendritic cells, T cells, neutrophils and eosinophils.
References
More filters
Journal ArticleDOI

Respiratory effects are associated with the number of ultrafine particles.

TL;DR: The present study suggests that the size distribution of ambient particles helps to elucidate the properties of ambient aerosols responsible for health effects.
Journal ArticleDOI

Deposition of particles in the human respiratory tract in the size range 0.005–15 μm

TL;DR: In this paper, the authors presented experimentally determined total and regional deposition data for breathing monodisperse aerosols of a wide particle size range at different patterns through the mouth and nose.
Journal ArticleDOI

Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material

TL;DR: Although laboratory studies indicated that with sufficient agitation, unrefined SWCNT material can release fine particles into the air, concentrations generated while handling material in the field were very low, and estimates of the airborne concen-tration of nanotube material generated during handling suggest that concentrations were lower than 53μg/m3 in all cases.
Journal ArticleDOI

Pulmonary Retention of Ultrafine and Fine Particles in Rats

TL;DR: Both acute instillation and subchronic inhalation studies showed that ultrafine particles at equivalent masses access the pulmonary interstitium to a larger extent than fine particles (integral of 250 nm).
Related Papers (5)