scispace - formally typeset
Open AccessJournal ArticleDOI

Designing coupled-resonator optical waveguide delay lines

Reads0
Chats0
TLDR
In this paper, the trade-offs among delay, loss, and bandwidth in the design of coupled-resonator optical waveguide (CROW) delay lines were discussed.
Abstract
We address the trade-offs among delay, loss, and bandwidth in the design of coupled-resonator optical waveguide (CROW) delay lines. We begin by showing the convergence of the transfer matrix, tight-binding, and time domain formalisms in the theoretical analysis of CROWs. From the analytical formalisms we obtain simple, analytical expressions for the achievable delay, loss, bandwidth, and a figure of merit to be used to compare delay line performance. We compare CROW delay lines composed of ring resonators, toroid resonators, Fabry-Perot resonators, and photonic crystal defect cavities based on recent experimental results reported in the literature.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Silicon microring resonators

TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Journal ArticleDOI

Ultracompact optical buffers on a silicon chip

TL;DR: In this paper, the trade-offs between resonantly enhanced group delay, device size, insertion loss and operational bandwidth are analyzed for various delay-line designs, and a large fractional group delay exceeding 10 bits is achieved for bit rates as high as 20 Gbps.
Patent

Wireless energy transfer

TL;DR: In this paper, a first resonator structure configured to transfer energy non-radiatively with a second resonance structure over a distance greater than a characteristic size of the second resonator.
Patent

Wireless non-radiative energy transfer

TL;DR: In this paper, the authors proposed an electromagnetic energy transfer device that includes a first resonator structure receiving energy from an external power supply, and a second resonance structure is positioned distal from the first, and supplies useful working power to an external load.
Journal ArticleDOI

Multipurpose silicon photonics signal processor core

TL;DR: A reconfigurable but simple silicon waveguide mesh with different functionalities with a simple seven hexagonal cell structure is demonstrated, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems.
References
More filters
Proceedings Article

Optical microcavities

TL;DR: In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible.
Journal ArticleDOI

High- Q photonic nanocavity in a two-dimensional photonic crystal

TL;DR: A silicon-based two-dimensional photonic-crystal slab is used to fabricate a nanocavity with Q = 45,000 and V = 7.0 × 10-14 cm3; the value of Q/V is 10–100 times larger than in previous studies, underlying the realization that light should be confined gently in order to be confined strongly.
Journal ArticleDOI

Ultra-high-Q toroid microcavities on a chip

TL;DR: This work demonstrates a process for producing silica toroid-shaped microresonators-on-a-chip with Q factors in excess of 100 million using a combination of lithography, dry etching and a selective reflow process, representing an improvement of nearly four orders of magnitude over previous chip-based resonators.
Journal Article

Optical microcavities : Photonic technologies

Kerry J. Vahala
- 01 Jan 2003 - 
TL;DR: Optical microcavities confine light to small volumes by resonant recirculation as discussed by the authors, and are indispensable for a wide range of applications and studies, such as long-distance transmission of data over optical fibres; they also ensure narrow spot-size laser read/write beams in CD and DVD players.
Journal ArticleDOI

Microring resonator channel dropping filters

TL;DR: In this article, a method of coupling of modes in time was proposed to simplify both the analysis and filter synthesis aspects of these devices, and the response of filters comprised of an arbitrarily large dumber of resonators may be written down by inspection, as a continued fraction.
Related Papers (5)