scispace - formally typeset
Journal ArticleDOI

Development and testing of a general amber force field.

Reads0
Chats0
TLDR
A general Amber force field for organic molecules is described, designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens.
Abstract
We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom types, but incorporates both empirical and heuristic models to estimate force constants and partial atomic charges. The performance of GAFF in test cases is encouraging. In test I, 74 crystallographic structures were compared to GAFF minimized structures, with a root-mean-square displacement of 0.26 A, which is comparable to that of the Tripos 5.2 force field (0.25 A) and better than those of MMFF 94 and CHARMm (0.47 and 0.44 A, respectively). In test II, gas phase minimizations were performed on 22 nucleic acid base pairs, and the minimized structures and intermolecular energies were compared to MP2/6-31G* results. The RMS of displacements and relative energies were 0.25 A and 1.2 kcal/mol, respectively. These data are comparable to results from Parm99/RESP (0.16 A and 1.18 kcal/mol, respectively), which were parameterized to these base pairs. Test III looked at the relative energies of 71 conformational pairs that were used in development of the Parm99 force field. The RMS error in relative energies (compared to experiment) is about 0.5 kcal/mol. GAFF can be applied to wide range of molecules in an automatic fashion, making it suitable for rational drug design and database searching.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Systematic Parametrization of Polarizable Force Fields from Quantum Chemistry Data.

TL;DR: This work introduces ForceBalance, a method and free software package for systematic force field optimization with the ability to parametrize a wide variety of functional forms using flexible combinations of reference data.
Journal ArticleDOI

A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

TL;DR: The results suggest that the dynamical behavior of this and related ionic liquids is extremely complex and consists of many different modes with widely varying timescales, making the prediction of dynamical trends extremely difficult.
Journal ArticleDOI

Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior

TL;DR: The two-dimensional self-assembly of a terbium(III) double-decker phthalocyanine on highly oriented pyrolitic graphite (HOPG) was studied by atomic force microscopy (AFM), and it was shown that it forms highly regular rectangularTwo-dimensional nanocrystals on the surface, that are aligned with the graphite symmetry axes.
Journal ArticleDOI

A Simple AIMD Approach to Derive Atomic Charges for Condensed Phase Simulation of Ionic Liquids

TL;DR: In this paper, the atomic charges for two ionic liquids (ILs), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and 1-ethyl-3methyloride-drug-hexafluoric acid (EMIM[PF6]), were derived from periodic crystal phase calculations with density functional theory and plane wave basis sets (denoted as AIMD-c charge).
Journal ArticleDOI

Uncovering Molecular Details of Urea Crystal Growth in the Presence of Additives

TL;DR: This case study examines the paradigmatic case of urea which is known to crystallize from water with a needle-like morphology and general principles for the understanding of the anisotropic growth of molecular crystals from solutions are laid out.
References
More filters
Journal ArticleDOI

A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model

TL;DR: In this paper, the authors present an approach to generate electrostatic potential (ESP) derived charges for molecules, which optimally reproduce the intermolecular interaction properties of molecules with a simple two-body additive potential, provided that a suitably accurate level of quantum mechanical calculation is used to derive the ESP around the molecule.
Journal ArticleDOI

Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94

TL;DR: The first published version of the Merck molecular force field (MMFF) is MMFF94 as mentioned in this paper, which is based on the OPLS force field and has been applied to condensed-phase processes.
Journal ArticleDOI

A new force field for molecular mechanical simulation of nucleic acids and proteins

TL;DR: In this paper, a force field for simulation of nucleic acids and proteins is presented, which is based on the ECEPP, UNECEPP, and EPEN energy refinement software.
Journal ArticleDOI

How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules

TL;DR: In this paper, the authors present conformational energies for a molecular mechanical model (Parm99) developed for organic and biological molecules using the restrained electrostatic potential (RESP) approach to derive the partial charges.
Related Papers (5)