scispace - formally typeset
Journal ArticleDOI

Development and testing of a general amber force field.

Reads0
Chats0
TLDR
A general Amber force field for organic molecules is described, designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens.
Abstract
We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom types, but incorporates both empirical and heuristic models to estimate force constants and partial atomic charges. The performance of GAFF in test cases is encouraging. In test I, 74 crystallographic structures were compared to GAFF minimized structures, with a root-mean-square displacement of 0.26 A, which is comparable to that of the Tripos 5.2 force field (0.25 A) and better than those of MMFF 94 and CHARMm (0.47 and 0.44 A, respectively). In test II, gas phase minimizations were performed on 22 nucleic acid base pairs, and the minimized structures and intermolecular energies were compared to MP2/6-31G* results. The RMS of displacements and relative energies were 0.25 A and 1.2 kcal/mol, respectively. These data are comparable to results from Parm99/RESP (0.16 A and 1.18 kcal/mol, respectively), which were parameterized to these base pairs. Test III looked at the relative energies of 71 conformational pairs that were used in development of the Parm99 force field. The RMS error in relative energies (compared to experiment) is about 0.5 kcal/mol. GAFF can be applied to wide range of molecules in an automatic fashion, making it suitable for rational drug design and database searching.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation

TL;DR: In this article, the influence of FEC on LiPF6/ethylene carbonate (EC) electrolytes for Si anodes is investigated through classical molecular dynamics, Fourier transform infrared spectroscopy, and quantum chemical calculations.
Journal ArticleDOI

Atomistic simulations of hydrated nafion and temperature effects on hydronium ion mobility

TL;DR: It is identified that hydronium ions play an important role in modifying the hydration structure near the sulfonate groups through the determination and analysis of structural and dynamical parameters such as density, radial distribution functions, coordination numbers, mean square deviations, and diffusion coefficients.
Journal ArticleDOI

Selective Sirt2 inhibition by ligand-induced rearrangement of the active site.

TL;DR: High-resolution structures of human Sirt2 in complex with highly selective drug-like inhibitors that show a unique inhibitory mechanism are presented and structural insights into this unique mechanism of selective sirtuin inhibition provide the basis for further inhibitor development and selective tools for sIRTuin biology.
Journal ArticleDOI

Identification of a specific inhibitor of the Dishevelled PDZ domain

TL;DR: This compound provides a basis for rational design of high-affinity inhibitors of the PDZ domain, which can block Wnt signaling by interrupting the Fz-Dvl interaction.
Journal ArticleDOI

Protein-ligand docking in the new millennium--a retrospective of 10 years in the field

TL;DR: Current challenges in the field of protein-ligand docking such as the treatment of protein flexibility, the presence of structural water molecules and its effect in docking, and the entropy of binding are dissected and discussed, trying to anticipate the next years in this field.
References
More filters
Journal ArticleDOI

A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model

TL;DR: In this paper, the authors present an approach to generate electrostatic potential (ESP) derived charges for molecules, which optimally reproduce the intermolecular interaction properties of molecules with a simple two-body additive potential, provided that a suitably accurate level of quantum mechanical calculation is used to derive the ESP around the molecule.
Journal ArticleDOI

Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94

TL;DR: The first published version of the Merck molecular force field (MMFF) is MMFF94 as mentioned in this paper, which is based on the OPLS force field and has been applied to condensed-phase processes.
Journal ArticleDOI

A new force field for molecular mechanical simulation of nucleic acids and proteins

TL;DR: In this paper, a force field for simulation of nucleic acids and proteins is presented, which is based on the ECEPP, UNECEPP, and EPEN energy refinement software.
Journal ArticleDOI

How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules

TL;DR: In this paper, the authors present conformational energies for a molecular mechanical model (Parm99) developed for organic and biological molecules using the restrained electrostatic potential (RESP) approach to derive the partial charges.
Related Papers (5)