scispace - formally typeset
Journal ArticleDOI

Development and testing of a general amber force field.

Reads0
Chats0
TLDR
A general Amber force field for organic molecules is described, designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens.
Abstract
We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom types, but incorporates both empirical and heuristic models to estimate force constants and partial atomic charges. The performance of GAFF in test cases is encouraging. In test I, 74 crystallographic structures were compared to GAFF minimized structures, with a root-mean-square displacement of 0.26 A, which is comparable to that of the Tripos 5.2 force field (0.25 A) and better than those of MMFF 94 and CHARMm (0.47 and 0.44 A, respectively). In test II, gas phase minimizations were performed on 22 nucleic acid base pairs, and the minimized structures and intermolecular energies were compared to MP2/6-31G* results. The RMS of displacements and relative energies were 0.25 A and 1.2 kcal/mol, respectively. These data are comparable to results from Parm99/RESP (0.16 A and 1.18 kcal/mol, respectively), which were parameterized to these base pairs. Test III looked at the relative energies of 71 conformational pairs that were used in development of the Parm99 force field. The RMS error in relative energies (compared to experiment) is about 0.5 kcal/mol. GAFF can be applied to wide range of molecules in an automatic fashion, making it suitable for rational drug design and database searching.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Efficient estimators for quantum instanton evaluation of the kinetic isotope effects: Application to the intramolecular hydrogen transfer in pentadiene

TL;DR: The quantum instanton approximation is used to compute kinetic isotope effects for intramolecular hydrogen transfer in cis-1,3-pentadiene to treat all 39 degrees of freedom quantum mechanically and uses an empirical valence bond potential based on a molecular mechanics force field.
Journal ArticleDOI

Structure of hydrated Na-Nafion polymer membranes.

TL;DR: This work uses molecular dynamics simulations to investigate the structure of the hydrated Na-Nafion membranes and examines the probability of finding water molecules around the Na+ and the -SO3(-) ions as well as the probabilities of finding other water molecules next to a given water molecule.
Journal ArticleDOI

Ligand-Induced Conformational Change in the α7 Nicotinic Receptor Ligand Binding Domain

TL;DR: Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change.
Journal ArticleDOI

The Impact of Small Molecule Binding on the Energy Landscape of the Intrinsically Disordered Protein C-Myc

TL;DR: Structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations, suggesting that 1 binds to c- myc through an extended conformational selection mechanism.
References
More filters
Journal ArticleDOI

A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model

TL;DR: In this paper, the authors present an approach to generate electrostatic potential (ESP) derived charges for molecules, which optimally reproduce the intermolecular interaction properties of molecules with a simple two-body additive potential, provided that a suitably accurate level of quantum mechanical calculation is used to derive the ESP around the molecule.
Journal ArticleDOI

Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94

TL;DR: The first published version of the Merck molecular force field (MMFF) is MMFF94 as mentioned in this paper, which is based on the OPLS force field and has been applied to condensed-phase processes.
Journal ArticleDOI

A new force field for molecular mechanical simulation of nucleic acids and proteins

TL;DR: In this paper, a force field for simulation of nucleic acids and proteins is presented, which is based on the ECEPP, UNECEPP, and EPEN energy refinement software.
Journal ArticleDOI

How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules

TL;DR: In this paper, the authors present conformational energies for a molecular mechanical model (Parm99) developed for organic and biological molecules using the restrained electrostatic potential (RESP) approach to derive the partial charges.
Related Papers (5)