scispace - formally typeset
Journal ArticleDOI

Development of high performance OLEDs for general lighting

Hisahiro Sasabe, +1 more
- 07 Feb 2013 - 
- Vol. 1, Iss: 9, pp 1699-1707
Reads0
Chats0
TLDR
The first white organic light-emitting device (OLED) was developed in 1993, and the power efficiency and lifetime of this white OLED were reportedly only < 1 lm W−1 and < 1 day, respectively.
Abstract
Since the development of the first white organic light-emitting device (OLED) in 1993, twenty years have passed. The power efficiency and lifetime of this white OLED were reportedly only <1 lm W−1 and <1 day, respectively. However, recent rapid advances in material chemistry have enabled the use of white OLEDs for general lighting. In 2012, white OLED panel efficiency has reached 90 lm W−1 at 1000 cd m−2, and a tandem white OLED panel has realized a lifetime of over 100 000 hours. What is more important in OLEDs is to shed clear light on the new design products, such as transparent lighting panels and luminescent wallpapers. These fascinating features enable OLEDs as a whole new invention of artificial lighting. In this review, we would like to overview the recent developments of white OLED, especially three key elemental technologies related to material chemistry: (1) low operating voltage technology, (2) phosphorescent OLED technology and (3) multi-photon emission (MPE) device technology.

read more

Citations
More filters
Journal ArticleDOI

Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices.

TL;DR: Efficient sky-blue organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) display a three orders of magnitude increase in lifetime, which is superior to those of controlled phosphorescent OLEDs used in this study.
Journal ArticleDOI

Recent progress in luminescent liquid crystal materials: design, properties and application for linearly polarised emission

TL;DR: In this paper, the structure-property relationships for polarised emission and electroluminescence of liquid crystal materials are presented and discussed, with a focus on phosphorescent metallomesogens.
Journal ArticleDOI

Light-blue thermally activated delayed fluorescent emitters realizing a high external quantum efficiency of 25% and unprecedented low drive voltages in OLEDs

TL;DR: In this article, the authors developed a series of TADF emitters, 2-functionalized-4,6-bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]pyrimidine called Ac-RPM, which achieved an ηp of 62 lm W−1, a high external quantum efficiency of 25%, light-blue emissions with the Commission Internationale de l’Eclairage chromaticity coordinates of (0.19, 0.37) and a low turn
Journal ArticleDOI

Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials

TL;DR: In this article, the intrinsic chemical stability of organic materials, which contain typical electron-accepting moieties of sulfonyl, phosphine-oxide, and carbonyl group, was investigated.
Journal ArticleDOI

Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters

TL;DR: In this paper, the authors developed thermally activated delayed fluorescence (TADF) emitters containing 5,10-dihydrophenazine as an electron donor and various electron acceptor units.
References
More filters
Journal ArticleDOI

Organic Electroluminescent Diodes

TL;DR: In this article, a double-layer structure of organic thin films was prepared by vapor deposition, and efficient injection of holes and electrons was provided from an indium-tinoxide anode and an alloyed Mg:Ag cathode.
Journal ArticleDOI

Very high-efficiency green organic light-emitting devices based on electrophosphorescence

TL;DR: In this paper, the performance of an organic light-emitting device employing the green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4′-N,N′-dicarbazole-biphenyl host was described.
Journal ArticleDOI

White organic light-emitting diodes with fluorescent tube efficiency

TL;DR: An improved OLED structure which reaches fluorescent tube efficiency and focuses on reducing energetic and ohmic losses that occur during electron–photon conversion, which could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
Journal ArticleDOI

Management of singlet and triplet excitons for efficient white organic light-emitting devices

TL;DR: This device challenges incandescent sources by exhibiting total external quantum and power efficiencies that peak at 18.7 ± 0.6 lm W-1, respectively, and two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants, retaining the singlet energy exclusively on the blue fluorescent dopant.
Related Papers (5)