scispace - formally typeset
Open AccessJournal ArticleDOI

Dynamics and statistics of heavy particles in turbulent flows

TLDR
In this paper, direct numerical simulations of turbulent flows seeded with millions of passive inertial particles are presented, where the maximum Reynolds number is Re λ∼ 200 and the acceleration fluctuations as a function of the Stokes number in the range St ∈ [0.16:3].
Abstract
We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re λ∼ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical evolution. We discuss both the transient and the stationary regimes. In the transient regime, we study the growth of inhomogeneities in the particle spatial distribution driven by the preferential concentration out of intense vortex filaments. In the stationary regime, we study the acceleration fluctuations as a function of the Stokes number in the range St ∈ [0.16:3.3]. We also compare our results with those of pure fluid tracers (St = 0) and we find a critical behavior of inertia for small Stokes values. Starting from the pure monodisperse statistics we also characterize polydisperse suspensions with a given mean Stokes, .

read more

Citations
More filters
Journal ArticleDOI

Lagrangian Properties of Particles in Turbulence

TL;DR: The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing as discussed by the authors, and the statistical properties of particles when advected by fully developed turbulent flows.
Journal ArticleDOI

Wall-layer models for large-eddy simulations

TL;DR: In this article, the authors present three broad classes of approaches: bypassing this region altogether using wall functions, solving a separate set of equations in the nearwall region, weakly coupled to the outer flow, or simulating the near-wall region in a global, Reynolds-averaged, sense.
Journal ArticleDOI

Approaching complexity by stochastic methods: From biological systems to turbulence

TL;DR: A review of the operational methods that have been developed for analyzing stochastic data in time and scale can be found in this paper, where a basic ingredient of the approach to the analysis of fluctuating data is the presence of a Markovian property, which can be detected in real systems above a certain time or length scale.
Journal ArticleDOI

Laser diagnostics and their interplay with computations to understand turbulent combustion

TL;DR: In this article, the authors discuss the application of multiple laser techniques in flames having relatively simple fuels and flow geometries, as well as separate application of complementary diagnostics in the same flames.
References
More filters
Book

Microphysics of Clouds and Precipitation

TL;DR: In this article, the authors focus on one major aspect of cloud microphysics, which involves the processes that lead to the formation of individual cloud and precipitation particles, and provide an account of the major characteristics of atmospheric aerosol particles.
Journal ArticleDOI

Equation of motion for a small rigid sphere in a nonuniform flow

TL;DR: In this paper, the forces on a small rigid sphere in a nonuniform flow are considered from first prinicples in order to resolve the errors in Tchen's equation and the subsequent modified versions that have since appeared.
Book

Atmospheric Chemistry and Physics of Air Pollution

TL;DR: The Gaussian Plume Equation and Air Quality Models Atmospheric Removal Processes and Residence Times Air Pollution Statistics Acid Rain Index (AIRI) as mentioned in this paper, which measures the amount of acid rain in the air.
Journal ArticleDOI

A general classification of three-dimensional flow fields

TL;DR: In this paper, the geometry of solution trajectories for three first-order coupled linear differential equations can be related and classified using three matrix invariants for elementary three-dimensional flow patterns defined by instantaneous streamlines for flow at and away from no slip boundaries for both compressible and incompressible flow.
Journal ArticleDOI

The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields

TL;DR: In this article, the average settling velocity in homogeneous turbulence of a small rigid spherical particle subject to a Stokes drag force was shown to depend on the particle inertia and the free-fall terminal velocity in still fluid.
Related Papers (5)