scispace - formally typeset
Journal ArticleDOI

Electrochemical Model Based Observer Design for a Lithium-Ion Battery

TLDR
This work proposes an output error injection observer based on a reduced set of partial differential-algebraic equations that has a less complex structure, while it still captures the main dynamics of a lithium-ion battery.
Abstract
Batteries are the key technology for enabling further mobile electrification and energy storage. Accurate prediction of the state of the battery is needed not only for safety reasons, but also for better utilization of the battery. In this work we present a state estimation strategy for a detailed electrochemical model of a lithium-ion battery. The benefit of using a detailed model is the additional information obtained about the battery, such as accurate estimates of the internal temperature, the state of charge within the individual electrodes, overpotential, concentration and current distribution across the electrodes, which can be utilized for safety and optimal operation. Based on physical insight, we propose an output error injection observer based on a reduced set of partial differential-algebraic equations. This reduced model has a less complex structure, while it still captures the main dynamics. The observer is extensively studied in simulations and validated in experiments for actual electric-vehicle drive cycles. Experimental results show the observer to be robust with respect to unmodeled dynamics as well as to noisy and biased voltage and current measurements. The available state estimates can be used for monitoring purposes or incorporated into a model based controller to improve the performance of the battery while guaranteeing safe operation.

read more

Citations
More filters
Journal ArticleDOI

Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles

TL;DR: In this paper, the methods for monitoring the battery state of charge, capacity, impedance parameters, available power, state of health, and remaining useful life are reviewed with the focus on elaboration of their strengths and weaknesses for the use in on-line BMS applications.
Journal ArticleDOI

Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles

TL;DR: In this paper, a battery management system (BMS) for the smart grid and electric vehicles (EVs) has been proposed to improve the performance of Li-ion batteries.
Journal ArticleDOI

Lithium-ion battery fast charging: A review

TL;DR: Robust model-based charging optimisation strategies are identified as key to enabling fast charging in all conditions, with a particular focus on techniques capable of achieving high speeds and good temperature homogeneities.
Journal ArticleDOI

Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries

TL;DR: A review of the studies on the modeling of Li-ion batteries with simplified P2D models is presented in this article, where the assumptions on which these models rest are stated, the calculation methods are examined, the advantages and the drawbacks of the models are discussed and their applications are presented.
Journal ArticleDOI

A new neural network model for the state-of-charge estimation in the battery degradation process

TL;DR: In this article, a new Radial Basis Function Neural Network (RBFNN) model is proposed to eliminate the battery degradation's effect on the battery state-of-charge (SOC) estimation accuracy.
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell

TL;DR: In this article, the galvanostatic charge and discharge of a lithium anode/solid polymer separator/insertion cathode cell is modeled using concentrated solution theory, which is general enough to include a wide range of polymeric separator materials, lithium salts, and composite insertion cathodes.
Journal ArticleDOI

Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification

TL;DR: In this article, an extended Kalman filter (EKF) was used to estimate the battery state of charge, power fade, capacity fade, and instantaneous available power of a hybrid electric vehicle battery pack.
Journal ArticleDOI

Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation

TL;DR: In this article, extended Kalman filtering (EKF) is used to estimate battery state-of-charge, power fade, capacity fade, and instantaneous available power for hybrid-electric-vehicle battery packs.
Journal ArticleDOI

Simulation and Optimization of the Dual Lithium Ion Insertion Cell

TL;DR: In this article, the galvanostatic charge and discharge of a dual lithium ion insertion (rocking chair) cell are modeled with concentrated solution theory, and the insertion of lithium into and out of active electrode material is simulated using superposition, greatly simplifying the numerical calculations.
Related Papers (5)