scispace - formally typeset
Journal ArticleDOI

Algorithms for Advanced Battery-Management Systems

Reads0
Chats0
TLDR
In this paper, the authors present a detailed description and model of a Li-ion battery, which is based on using electrochemical principles to develop a physics-based model in contrast to equivalent circuit models.
Abstract
Lithium-ion (Li-ion) batteries are ubiquitous sources of energy for portable electronic devices. Compared to alternative battery technologies, Li-ion batteries provide one of the best energy-to-weight ratios, exhibit no memory effect, and have low self-discharge when not in use. These beneficial properties, as well as decreasing costs, have established Li-ion batteries as a leading candidate for the next generation of automotive and aerospace applications. In the automotive sector, increasing demand for hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), and EVs has pushed manufacturers to the limits of contemporary automotive battery technology. This limitation is gradually forcing consideration of alternative battery technologies, such as Li-ion batteries, as a replacement for existing leadacid and nickel-metal-hydride batteries. Unfortunately, this replacement is a challenging task since automotive applications demand large amounts of energy and power and must operate safely, reliably, and durably at these scales. The article presents a detailed description and model of a Li-ion battery. It begins the section "Intercalation-Based Batteries" by providing an intuitive explanation of the fundamentals behind storing energy in a Li-ion battery. In the sections "Modeling Approach" and "Li-Ion Battery Model," it present equations that describe a Li-ion cell's dynamic behavior. This modeling is based on using electrochemical principles to develop a physics-based model in contrast to equivalent circuit models. A goal of this article is to present the electrochemical model from a controls perspective.

read more

Citations
More filters
Journal ArticleDOI

A Critical Review of Li/Air Batteries

TL;DR: In this paper, the authors discuss the most critical challenges to developing robust, high-energy Li/air batteries and suggest future research directions to understand and overcome these challenges and predict that Li-air batteries will primarily remain a research topic for the next several years.
Journal ArticleDOI

Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles

TL;DR: In this paper, the methods for monitoring the battery state of charge, capacity, impedance parameters, available power, state of health, and remaining useful life are reviewed with the focus on elaboration of their strengths and weaknesses for the use in on-line BMS applications.
Journal ArticleDOI

State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model

TL;DR: An adaptive Kalman filter algorithm that can greatly improve the dependence of the traditional filter algorithm on the battery model is employed and is evaluated by experiments with federal urban driving schedules, showing that the proposed SOC estimation using AEKF is more accurate and reliable than that using EKF.
Journal ArticleDOI

A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems

TL;DR: In this article, a systematic review of the most commonly used battery modeling and state estimation approaches for BMSs is presented, including the physics-based electrochemical models, the integral and fractional order equivalent circuit models, and data-driven models.
Journal ArticleDOI

Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications

TL;DR: The paper outlines the current state of the art for modeling in BMS and the advanced models required to fully utilize BMS for both lithium-ion batteries and vanadium redox-flow batteries.
References
More filters
Book

Electrochemical Methods: Fundamentals and Applications

TL;DR: In this paper, the authors present a comprehensive overview of electrode processes and their application in the field of chemical simulation, including potential sweep and potential sweep methods, coupled homogeneous chemical reactions, double-layer structure and adsorption.
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

Electrochemical Methods: Fundamentals and Applications

TL;DR: In this paper, the authors present a survey of electrochemical methods and their applications, focusing on the following categories: electrochemical water treatment methods, electrochemical method fundamentals and applications, and student solutions manual.
Journal ArticleDOI

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell

TL;DR: In this article, the galvanostatic charge and discharge of a lithium anode/solid polymer separator/insertion cathode cell is modeled using concentrated solution theory, which is general enough to include a wide range of polymeric separator materials, lithium salts, and composite insertion cathodes.
Related Papers (5)