scispace - formally typeset
Journal ArticleDOI

Electrochemically Assisted Microbial Production of Hydrogen from Acetate

TLDR
By augmenting the electrochemical potential achieved by bacteria in this MFC with an additional voltage of 250 mV or more, it was possible to produce hydrogen at the cathode directly from the oxidized organic matter.
Abstract
Hydrogen production via bacterial fermentation is currently limited to a maximum of 4 moles of hydrogen per mole of glucose, and under these conditions results in a fermentation end product (acetate; 2 mol/mol glucose) that bacteria are unable to further convert to hydrogen. It is shown here that this biochemical barrier can be circumvented by generating hydrogen gas from acetate using a completely anaerobic microbial fuel cell (MFC). By augmenting the electrochemical potential achieved by bacteria in this MFC with an additional voltage of 250 mV or more, it was possible to produce hydrogen at the cathode directly from the oxidized organic matter. More than 90% of the protons and electrons produced by the bacteria from the oxidation of acetate were recovered as hydrogen gas, with an overall Coulombic efficiency (total recovery of electrons from acetate) of 60−78%. This is equivalent to an overall yield of 2.9 mol H2/mol acetate (assuming 78% Coulombic efficiency and 92% recovery of electrons as hydrogen)....

read more

Citations
More filters
Journal ArticleDOI

Microbial Fuel Cells: Methodology and Technology†

TL;DR: A review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results are provided.
Journal ArticleDOI

A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.

TL;DR: A critical review on the recent advances in MFC research with emphases on MFC configurations and performances is presented.
Journal ArticleDOI

Microbial electrosynthesis — revisiting the electrical route for microbial production

TL;DR: This Review addresses the principles, challenges and opportunities of microbial electrosynthesis, an exciting new discipline at the nexus of microbiology and electrochemistry.
Journal ArticleDOI

Membrane-based processes for sustainable power generation using water

TL;DR: Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters, allowing both wastewater treatment and power production.
Journal ArticleDOI

Microbial fuel cells: From fundamentals to applications. A review

TL;DR: The development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described, introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells.
References
More filters
Journal ArticleDOI

Electricity production by geobacter sulfurreducens attached to electrodes

TL;DR: The results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.
Journal ArticleDOI

Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.

TL;DR: An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2.
Journal ArticleDOI

Production of electricity during wastewater treatment using a single chamber microbial fuel cell.

TL;DR: It is demonstrated here that it is also possible to produce electricity in a MFC from domestic wastewater, while at the same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD), which may represent a completely new approach to wastewater treatment.
Journal ArticleDOI

Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments

TL;DR: A specific enrichment of microorganisms of the family Geobacteraceae is reported on energy-harvesting anodes, and it is shown that these microorganisms can conserve energy to support their growth by oxidizing organic compounds with an electrode serving as the sole electron acceptor.
Journal ArticleDOI

A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens

TL;DR: In this paper, direct electron transfer from different Shewanella putrefaciens strains to an electrode was examined using cyclic voltammetry and a fuel cell type electrochemical cell.
Related Papers (5)