scispace - formally typeset
Journal ArticleDOI

Electronic Structures of Metal Sites in Proteins and Models: Contributions to Function in Blue Copper Proteins

TLDR
The purpose of this review is to present the information content of spectroscopic methods, which allow one to focus in on the metalloactive site, define its electronic structure, evaluate the role of the protein in determining geometric and Electronic structure, and elucidate the contributions of electronic structure to function.
Abstract
Approximately one-half of all known protein crystal structures in the protein data bank (PDB) contain metal ion cofactors, which play vital roles in charge neutralization, structure, and function.1,2 These proteins range in size from 5000-107 Da with the metal ion corresponding to only on the order of 0.1 wt % of the molecule. Yet, for a wide range of these metalloproteins, the metal ion and its environment are key to the chemistry as these comprise the active site in catalysis. It is the purpose of this review to present the information content of spectroscopic methods, which allow one to focus in on the metalloactive site (Figure 1), define its electronic structure, evaluate the role of the protein in determining geometric and electronic structure, and elucidate the contributions of electronic structure to function. Metalloproteins are simply metal complexes but with remarkably intricate and complex ligands. The metal ion, clusters of metal ions bridged by oxide or sulfide ligands or equatorially chelated by N-heterocyclic ligands (heme, corrin, etc.), are bound to the protein through one or more of the endogenous ligand lone pair donors in Table 1. Note that for most of the donor groups, this requires deprotonation, and the metal ion competition with the proton for the free base lowers the effective pKA by at least several log units from those intrinsic values listed in Table 1. It is important to emphasize that for a number of the ligands in Tables 1 and 2, in particular phenolate, thiolate, oxo and sulfido, and the N-heterocyclic chelates, the metal complex exhibits extremely intense low energy charge transfer (CT) absorption bands, which reflect highly covalent ligand-metal bonds. These make major contributions to the electronic structure of an active site and can be affected by the geometry of the metal site and the orientation of the ligand-metal bond, which in turn can be influenced by the protein matrix. * To whom correspondence should be addressed. † Department of Chemistry, Stanford University. ‡ Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University. 419 Chem. Rev. 2004, 104, 419−458

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Copper Active Sites in Biology

TL;DR: This review presents in depth discussions of all these classes of Cu enzymes and the correlations within and among these classes, as well as the present understanding of the enzymology, kinetics, geometric structures, electronic structures and the reaction mechanisms these have elucidated.
Journal ArticleDOI

Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers.

TL;DR: Through this review, structural features responsible for their redox properties are examined, including knowledge gained from recent progress in fine-tuning the redox centers.
Journal ArticleDOI

Copper in diseases and treatments, and copper-based anticancer strategies.

TL;DR: Investigations into the occurrence of mechanisms of action quite different from platinum drugs head toward the development of new anticancer metallodrugs with improved specificity and decreased toxic side effects.
Journal ArticleDOI

Direct electron transfer between copper-containing proteins and electrodes

TL;DR: It is shown that long-range electron transfer between these enzymes and electrodes can be established, and the mechanistic schemes of the DET processes are proposed.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Journal ArticleDOI

Density-functional exchange-energy approximation with correct asymptotic behavior.

TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Related Papers (5)